3.定義2×2矩陣$[\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}]$=a1a4-a2a3,若f(x)=$[\begin{array}{l}{co{s}^{2}x-si{n}^{2}x}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{1}\end{array}]$,則f(x)的圖象向右平移$\frac{π}{3}$個單位得到函數(shù)g(x),則函數(shù)g(x)解析式為( 。
A.g(x)=-2cos2xB.g(x)=-2sin2xC.$g(x)=2sin(2x-\frac{π}{6})$D.$g(x)=-2cos(2x-\frac{π}{6})$

分析 利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得函數(shù)g(x)解析式.

解答 解:由題意可得f(x)=$[\begin{array}{l}{co{s}^{2}x-si{n}^{2}x}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{1}\end{array}]$=cos2x-sin2x-$\sqrt{3}$cos($\frac{π}{2}$+2x)
=cos2x+$\sqrt{3}$sin2x=2cos(2x-$\frac{π}{3}$),
則f(x)的圖象向右平移$\frac{π}{3}$個單位得到函數(shù)g(x)=2cos[2(x-$\frac{π}{3}$)-$\frac{π}{3}$]=2 cos(2x-π)=-2cos2x,
故選:A.

點評 本題主要考查三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=logk(1-kx)在[0,2]上是關(guān)于的增函數(shù),則k的取值范圍是$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.命題p:x,y∈R,x2+y2<2,命題q:x,y∈R,|x|+|y|<2,則p是q的什么條件( 。
A.充分非必要條件B.必要非充分條件
C.必要充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.△ABC中,角A、B、C所對的邊分別為a、b、c,依次成等比數(shù)列,則$\frac{1+sin2B}{sinB+cosB}$的取值范圍(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a>0,b>0,且a+b=1,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“x<1”是“l(fā)nx<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若數(shù)列{an}滿足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$=d,其中d為常數(shù),則稱數(shù)列{an}為等方差數(shù)列.已知等方差數(shù)列{an}滿足an>0,a1=1,a5=3.
(1)求數(shù)列{an}的通項公式;
(2)記bn=na${\;}_{n}^{2}$,若不等式kbn>n(4-k)+4對任意的n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.“x>1”是“l(fā)og2(x-1)<0”的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.若復數(shù)z=(m-1)+(m+2)i對應(yīng)的點在直線2x-y-2=0上,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案