10.已知拋物線E:x2=8y的焦點F到雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸進線的距離為$\frac{4\sqrt{5}}{5}$,且拋物線E上的動點M到雙曲線C的右焦點F1(c,0)的距離與直線y=-2的距離之和的最小值為3,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1

分析 確定拋物線的焦點坐標(biāo),雙曲線的漸近線方程,進而可得a=2b,再利用拋物線的定義,結(jié)合P到雙曲線C的右焦點F1(c,0)的距離與到直線y=-2的距離之和的最小值為3,可得FF1=3,從而可求雙曲線的幾何量,從而可得結(jié)論.

解答 解:拋物線x2=8y的焦點F(0,2)
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)一條漸近線的方程為bx-ay=0,
由拋物線x2=8y的焦點F到雙曲線C的漸近線的距離為$\frac{4\sqrt{5}}{5}$,
可得d=$\frac{2a}{\sqrt{{a}^{2}+^{2}}}$=$\frac{4\sqrt{5}}{5}$,即有2b=a,
由P到雙曲線C的右焦點F1(c,0)的距離與到直線y=-2的距離之和的最小值為3,
由拋物線的定義可得P到準(zhǔn)線的距離即為P到焦點F的距離,
可得|PF1|+|PF|的最小值為3,
連接FF1,可得|FF1|=3,即c2+4=9,解得c=$\sqrt{5}$,
由c2=a2+b2,a=2b,解得a=2,b=1,
則雙曲線的方程為$\frac{{x}^{2}}{4}$-y2=1.
故選:B.

點評 本題主要考查了拋物線、雙曲線的幾何性質(zhì),考查拋物線的定義,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωx(ω>0)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的周期T;
(2)求函數(shù)y=f(x)的解析式,并補充函數(shù)在區(qū)間[$\frac{π}{2}$,π]的圖象;
(3)判斷函數(shù)y=f(x)在區(qū)間[$\frac{3π}{4}$,π]上是增函數(shù)還是減函數(shù),并指出函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=1+i(i是虛數(shù)單位),則$\frac{2}{z}$-z2的共軛復(fù)數(shù)是( 。
A.-1+3iB.1+3iC.1-3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過雙曲線${x}^{2}-\frac{{y}^{2}}{4}=1$的右焦點F作直線l交雙曲線于A?B兩點,若|AB|=4,則這樣的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點與拋物線y2=20x的焦點重合,且其漸近線方程為y=±$\frac{4}{3}$x,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線x2-$\frac{{y}^{2}}{3}$=1的焦點坐標(biāo)為(-2,0),(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線的一條漸近線方程為y=4x,且雙曲線的焦點與拋物線y2=8x的焦點是重合的,則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1、F2,點P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為( 。
A.$\frac{5}{4}$B.$\frac{6}{5}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,多面體ABCDEF中,四邊形ABCD為菱形,且∠DAB=60°,EF∥AC,AD=2,EA=ED=EF=$\sqrt{3}$.
(Ⅰ)求證:AD⊥BE;
(Ⅱ)若BE=$\sqrt{5}$,求三棱錐F-BCD的體積.

查看答案和解析>>

同步練習(xí)冊答案