數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2
2
)an+sin2
2
,n∈N*,{an}的前n項和為Sn,則S2n=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由題中條件知{an}的奇數(shù)項構成了首項為1,公差為1的等差數(shù)列,而其偶數(shù)項則構成了首項為2,公比為2的等比數(shù)列,由此能求出該數(shù)列的前20項的和.
解答: 解:∵數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2
2
)an+sin2
2
,n∈N*,
∴a1=1,a2=2,a3=a1+1=2,a4=2a2+0=4,a5=a3+1=3,a6=2a4=8…
即其奇數(shù)項構成了首項為1,公差為1的等差數(shù)列,
而其偶數(shù)項則構成了首項為2,公比為2的等比數(shù)列,
所以該數(shù)列的前2n項的和:
S2n=[n+
n(n-1)
2
×1
]+
2(1-2n)
1-2

=
n2+n
2
+2n+1-2

故答案為:
n2+n
2
+2n+1-2
點評:本題考查數(shù)列的前2n項和的求法,是中檔題,解題時要認真審題,注意等差數(shù)列和等比數(shù)列的性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD內接于圓O,DE與圓O相切于點D,AC∩BD=F,F(xiàn)為AC的中點,O∈BD,CD=
10
,BC=5,則AE=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|(0<a<1)
(1)若|m|<2,使得函數(shù)h(x)=f(x)-m有2個不同零點的概率是
 
;
(2)若方程[f(x)]2+b[f(x)]+c=0有3個不同的根,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式(m-2)x2+(m-2)x+1>0解是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

南昌市為增強市民的交通安全意識,面向全市征召“小紅帽”志愿者在部分交通路口協(xié)助交警維持交通,把符合條件的1000名志愿者按年齡分組:第1組[20,25)、第2組[25,30)、第3組[30,35)、第4組[35,40)、第5組[40,45),得到的頻率分布直方圖如圖所示:
(1)若從第3、4、5組中用分層抽樣的方法抽取12名志愿者在五一節(jié)這天到廣場協(xié)助交警維持交通,應從第3、4、5組各抽取多少名志愿者?
(2)在(1)的條件下,南昌市決定在這12名志愿者中隨機抽取3名志愿者到學校宣講交通安全知識,若ξ表示抽出的3名志愿者中第3組的人數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=n2•an(n∈N*),且a1=
1
2

(1)求a2,a3,a4的值;
(2)猜想an的表達式(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不共面的4個點中能否有3個點共線?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=log2
n+1
n+2
(n∈N*),設數(shù)列{an}的前n項的和為Sn,則使Sn<-5成立的正整數(shù)n的最小值為
 
(2)已知命題:“在等差數(shù)列{an}中,若4a2+a10+a)=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,且
an+1
an
=
n+1
n
,則a2014=(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

同步練習冊答案