9.設(shè)方程x2+y2+2$\sqrt{3}$x-ay-2a=0表示圓,實(shí)數(shù)a的取值范圍是(-∞,-6)∪(-2,+∞).

分析 利用二元二次方程表示圓的條件,列出不等式,求解即可.

解答 解:方程x2+y2+2$\sqrt{3}$x-ay-2a=0表示圓,
可得:$({2\sqrt{3})}^{2}+(-a)^{2}-4(-2a)$>0.
解得:a∈(-∞,-6)∪(-2,+∞).
故答案為:(-∞,-6)∪(-2,+∞).

點(diǎn)評(píng) 本題考查二元二次方程表示圓的條件的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.$\frac{3π}{5}$弧度化為角度是( 。
A.110°B.160°C.108°D.218°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x6(x+3)4=a10(x+1)10+a9(x+1)9+a8(x+1)8+…a1(x+1)+a0,則9a9+7a7+5a5+3a3+a1=( 。
A.64B.32C.-64D.-32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A(2,4)、B(-4.,6),若$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{4}{3}$$\overrightarrow{BA}$,則$\overrightarrow{CD}$的坐標(biāo)為(11,-$\frac{11}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知A,B,C是斜三角形ABC的三個(gè)內(nèi)角,求證:
(1)tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{A}{2}$tan$\frac{C}{2}$=1;
(2)tan2A+tan2B+tan2C=tan2Atan2Btan2C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)<$\overrightarrow{a}$,$\overrightarrow$>=θ,$\overrightarrow{a}$=(2,1),且$\overrightarrow{a}$+2$\overrightarrow$=(4,5),則cosθ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知sinθ+cosθ=$\frac{7}{13}$,π<θ<2π,那么tanθ=$-\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知A(5,-2),B(-5,-1),且$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{AB}$,則P點(diǎn)坐標(biāo)是(0,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程$\frac{x^2}{2+m}+\frac{y^2}{m+1}$=1表示雙曲線,則m的取值范圍是( 。
A.(-2,-1)B.(-2,+∞)C.(-∞,-1)D.(-∞,-2)∪(-1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案