16.已知直線l1:2x+y+1=0和直線l2:x+ay+3=0,若l1⊥l2,則實(shí)數(shù)a的值為-2;若l1∥l2,則l1與l2間的距離為$\sqrt{5}$.

分析 當(dāng)兩條直線垂直時(shí),A1A2+B1B2=0,解方程求出a的值.利用兩直線平行時(shí),由A1B2+A2B1=0且A1C2+A2C1≠0,求出a的值,再根據(jù)平行線間的距離公式即可求出.

解答 解:已知直線l1:2x+y+1=0,和l2:x+ay+3=0,
若l1⊥l2,由A1A2+B1B2=0得:2+a=0,
∴a=-2;
若l1∥l2,由A1B2+A2B1=0且A1C2+A2C1≠0,
得2a=1,解得:a=$\frac{1}{2}$.
這時(shí),l1:2x+y+1=0和l1:2x+y+6=0,
這兩條平行線間的距離d=$\frac{|5|}{\sqrt{1+4}}$=$\sqrt{5}$,
故答案為:-2,$\sqrt{5}$.

點(diǎn)評(píng) 本題考查兩直線相交、垂直、平行、重合的條件,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,其中m=1007${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,則輸出a的結(jié)果為( 。
A.3B.-$\frac{1}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線(3a+2)x+(1-4a)y+8=0與(5a-2)x+(a+4)y-7=0垂直,則實(shí)數(shù)a=(  )
A.0B.1C.0或1D.0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如果在一次實(shí)驗(yàn)中,測(cè)得數(shù)對(duì)(x,y)的四組數(shù)值分別是A(1,2),B(2,3),C(3,5),D(4,6).
(Ⅰ)試求y與x之間的回歸直線方程$\hat y=bx+a$;
(Ⅱ)用回歸直線方程預(yù)測(cè)x=5時(shí)的y值.
($b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點(diǎn)A(-a,2a)關(guān)于y軸對(duì)稱的點(diǎn)為B,點(diǎn)B關(guān)于點(diǎn)M(1,m)對(duì)稱的點(diǎn)為C,且m>2,a∈(0,1].
(Ⅰ)設(shè)△ABC的面積S,把S表示為關(guān)于a的解析式S=f(a);
(Ⅱ)若f(a)<m2-k-1恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=x2-4x-4在區(qū)間[t,t+1](t∈R)上的最小值記為g(t).
(1)寫出g(x)的函數(shù)表達(dá)式;
(2)畫出g(t)的圖象并寫出g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在標(biāo)準(zhǔn)化的考試中既有單選題又有多選題,多選題是從A,B,C,D四個(gè)選項(xiàng)中選出所有正確的答案(正確答案可能是一個(gè)或多個(gè)選項(xiàng)),有一道多選題考生不會(huì)做,若他隨機(jī)作答,則他答對(duì)的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{12}$C.$\frac{1}{15}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,陰影部分為古建筑物保護(hù)群所在地,其形狀是以O(shè)1為圓心,半徑為1km的半圓面.公路l經(jīng)過點(diǎn)O,且與直徑OA垂直,現(xiàn)計(jì)劃修建一條與半圓相切的公路PQ(點(diǎn)P在直徑OA的延長(zhǎng)線上,點(diǎn)Q在公路l上),T為切點(diǎn).
(1)按下列要求建立函數(shù)關(guān)系:
①設(shè)∠OPQ=α(rad),將△OPQ的面積S表示為α的函數(shù);
②設(shè)OQ=t(km),將△OPQ的面積S表示為t的函數(shù).
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系,求△OPQ的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若10a=2,10b=3,則10a-2b=$\frac{2}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案