若函數(shù)在區(qū)間上恰有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓O:x2+y2=c(0<c≤1),點(diǎn)P(a,b)是該圓面(包括⊙O圓周及內(nèi)部)上一點(diǎn),則a+b+c的最小值等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某體育用品商場(chǎng)經(jīng)營(yíng)一批每件進(jìn)價(jià)為40元的運(yùn)動(dòng)服,先做了市場(chǎng)調(diào)查,得到數(shù)據(jù)如下表:
銷售單價(jià)x(元) | 60 | 62 | 64 | 66 | 68 | … |
銷售量y(件) | 600 | 580 | 560 | 540 | 520 | … |
根據(jù)表中數(shù)據(jù),解答下列問(wèn)題:
⑴ 建立一個(gè)恰當(dāng)?shù)暮瘮?shù)模型,使它能較好地反映銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系,并寫出這個(gè)函數(shù)模型的解析式;
⑵ 試求銷售利潤(rùn)z(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式(銷售利潤(rùn) = 總銷售收入 - 總進(jìn)價(jià)成本)并求價(jià)格為多少利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知等差數(shù)列的公差為,前項(xiàng)和為,且,,成等比數(shù)列。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令=求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
右圖所示是某池塘中的浮萍蔓延的面積與時(shí)間(月)的關(guān)系:,有以下敘述:
① 這個(gè)指數(shù)函數(shù)的底數(shù)是2;
② 第5個(gè)月時(shí),浮萍的面積就會(huì)超過(guò);
③ 浮萍從蔓延到需要經(jīng)過(guò)個(gè)月;
④ 浮萍每個(gè)月增加 的面積都相等.
其中正確的說(shuō)法是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于四個(gè)正數(shù),如果,那么稱是的“下位序?qū)Α保?/p>
(1)對(duì)于,試求的“下位序?qū)Α保?/p>
(2)設(shè)均為正數(shù),且是的“下位序?qū)Α保嚺袛?sub>之間的大小關(guān)系;
(3)設(shè)正整數(shù)滿足條件:對(duì)集合內(nèi)的每個(gè),總存在,使得是的“下位序?qū)Α保?sub>是的“下位序?qū)Α保笳麛?shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com