A. | -$\frac{1}{3}$ | B. | -$\frac{1}{9}$ | C. | 0 | D. | 1 |
分析 求函數(shù)的導(dǎo)數(shù),要使函數(shù)有2個(gè)不同的零點(diǎn),則只需極大值等于0或極小值等于0,即可得到結(jié)論
解答 解:∵f(x)=x3+2x2+x-a,
∴f′(x)=3x2+4x+1=(3x+1)(x+1),
由f′(x)>0,解得x<-1或x>-$\frac{1}{3}$,此時(shí)函數(shù)單調(diào)遞增,
由f′(x)<0,解得-1<x<-$\frac{1}{3}$,此時(shí)函數(shù)單調(diào)遞減,
即當(dāng)x=-1函數(shù)f(x)取得極大值f(-1)=-1+2-1-a=a,
當(dāng)x=-$\frac{1}{3}$函數(shù)f(x)取得極小值f(-$\frac{1}{3}$)=-$\frac{2}{27}$-a,
若要使函數(shù)有2個(gè)不同的零點(diǎn),則只需極大值等于0或極小值等于0,
即a=0或-$\frac{2}{27}$-a=0,
解得a=0或a=-$\frac{2}{27}$,
故選:C
點(diǎn)評(píng) 本題主要考查函數(shù)零點(diǎn)的應(yīng)用,利用函數(shù)和極值之間的關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 如果一條直線與一個(gè)平面內(nèi)的無(wú)數(shù)條直線平行,則這條直線與這個(gè)平面平行 | |
B. | 兩個(gè)平面相交于唯一的公共點(diǎn) | |
C. | 如果一條直線與一個(gè)平面有兩個(gè)不同的公共點(diǎn),則它們必有無(wú)數(shù)個(gè)公共點(diǎn) | |
D. | 平面外的一條直線必與該平面內(nèi)無(wú)數(shù)條直線平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 對(duì)稱中心為$(\frac{π}{3},0)$ | |
B. | 函數(shù)y=sin2x向左平移$\frac{5π}{6}$個(gè)單位可得到f(x) | |
C. | f(x)在區(qū)間$(-\frac{2π}{3},-\frac{π}{6})$上遞增 | |
D. | 方程f(x)=0在區(qū)間$[-\frac{5π}{6},0]$上有三個(gè)零點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ②③④ | C. | ③④ | D. | ①③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com