19.已知函數(shù)f(x)=2|x-2|+ax(x∈R).
(1)當(dāng)f(x)有最小值時(shí),求a的取值范圍;
(2)若函數(shù)h(x)=f(sinx)-2存在零點(diǎn),求a的取值范圍.

分析 (1)首先把f(x)寫出分段函數(shù),要使得f(x)有最小值,a+2≥0且a-2≤0;
(2)函數(shù)h(x)=f(sinx)-2存在零點(diǎn)等價(jià)于“方程(a-2)sinx+2=0有解“,亦即$sinx=-\frac{2}{a-2}$有解.

解答 解:(1)$f(x)=\left\{{\begin{array}{l}{({a+2})x-4,x≥2}\\{({a-2})x+4,x<2}\end{array}}\right.$,要使函數(shù)f(x)有最小值,
需$\left\{\begin{array}{l}{a+2≥0}\\{a-2≤0}\end{array}\right.$∴-2≤a≤2,故a的取值范圍為[-2,2].

(2)∵sinx∈[-1,1],
∴f(sinx)=(a-2)sinx+4,
“h(x)=f(sinx)-2=(a-2)sinx+2存在零點(diǎn)”等價(jià)于
“方程(a-2)sinx+2=0有解“,亦即$sinx=-\frac{2}{a-2}$有解,
∴$-1≤-\frac{2}{a-2}≤1$,解得a≤0或a≥4,
∴a的取值范圍為(-∞,0]∪[4,+∞).

點(diǎn)評(píng) 本題主要考查了絕對(duì)值函數(shù)與分段函數(shù)性質(zhì)、函數(shù)零點(diǎn)、等價(jià)轉(zhuǎn)化思想,屬中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$f(x)=\frac{1}{2}({e^x}-{e^{-x}})$就奇偶性而言是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知2f(-x)+f(x)=x2-x(x≠0),求f(x)的解析式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(1)判斷f(x)的奇偶性 
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論中正確的是( 。
A.A與C互斥B.A、B、C中任何兩個(gè)均互斥
C.B與C互斥D.A、B、C中任何兩個(gè)均不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=2ax2+4(a-3)x+5在區(qū)間(-∞,3)上是減函數(shù),則a的取值范圍是( 。
A.$[0,\frac{3}{4}]$B.$(0,\frac{3}{4}]$C.$[0,\frac{3}{4})$D.$(0,\frac{3}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解不等式:x+$\frac{2}{x+1}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=x3+2x2+x-a恰好有兩個(gè)不同的零點(diǎn),則a的值可以為( 。
A.-$\frac{1}{3}$B.-$\frac{1}{9}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=|2x-m|(m為常數(shù)),對(duì)任意x∈R,均有f(x+3)=f(-x)恒成立.有下列說法:
①f(x)是以3為周期的函數(shù);
②若g(x)=f(x)+|2x-b|(b為常數(shù))的圖象關(guān)于直線x=1對(duì)稱,則b=1;
③若0<2α<β+2且f(α)=f(β+3),則必有-$\frac{1}{12}$≤3α2+β<$\frac{2}{3}$;
④已知定義在R上的函數(shù)F(x)對(duì)任意x均有F(x)=F(-x)成立,且當(dāng)x∈[0,3]時(shí),F(xiàn)(x)=f(x),又函數(shù)h(x)=-x2+c(c為常數(shù)),若存在x1、x2∈[-1,3]使得|F(x1)-h(x2)|<1成立,則c的取值范圍是(-1,13)
其中說法正確的有②③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案