11.已知函數(shù)f(x)=$\sqrt{3}$cos2x+2cos2($\frac{π}{4}$-x)-1.
(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)求f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{2}$]上的取值范圍.

分析 由已知首先化簡(jiǎn)三角函數(shù)解析式為一個(gè)角的一個(gè)三角函數(shù)的形式,然后利用三角函數(shù)的性質(zhì)解答.

解答 解:由已知f(x)=$\sqrt{3}$cos2x+2cos2($\frac{π}{4}$-x)-1=$\sqrt{3}$cos2x+cos($\frac{π}{2}$-2x)=$\sqrt{3}$cos2x+sin2x=2sin(2x$+\frac{π}{3}$),
所以(1)f(x)的最小正周期為$\frac{2π}{2}=π$,
又y=sinx的單調(diào)減區(qū)間為[$\frac{π}{2}+2kπ,\frac{3π}{2}+2kπ$],
所以f(x)的單調(diào)減區(qū)間(2x$+\frac{π}{3}$)∈[$\frac{π}{2}+2kπ,\frac{3π}{2}+2kπ$],
解得單調(diào)遞減區(qū)間[kπ+$\frac{π}{12}$,kπ$+\frac{7}{12}π$];
(2)若x∈[-$\frac{π}{3}$,$\frac{π}{2}$],
則(2x$+\frac{π}{3}$)∈[$-\frac{π}{3},\frac{4π}{3}$],
所以f(x)在區(qū)間[-$\frac{π}{3}$,$\frac{π}{2}$]上的取值范圍是[-1,2].

點(diǎn)評(píng) 本題考查了利用三角函數(shù)倍角公式以及兩角和與差的三角函數(shù)公式化簡(jiǎn)三角函數(shù)式,進(jìn)一步求周期及單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,b=asinC,c=acosB,則△ABC的形狀是等腰直角三角形..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2ex+$\frac{1}{x}$,
(1)求f′(x);
(2)求${∫}_{1}^{2}$f(x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù),f(x)=xlnx,g(x)=$\frac{1}{3}$ax2-bx其中a,b∈R
(Ⅰ)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)b=-$\frac{2}{3}$a時(shí),若f(x)≤$\frac{3}{2}$g(x-1)對(duì)x∈(1,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知公差不為0的等差數(shù)列{an}中,a1+a2+a3+a4=20,a1,a2,a4成等比數(shù)列,求集合A={x|x=an,n∈N*且100<x<200}的元素個(gè)數(shù)及所有這些元素的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求使下列函數(shù)為減函數(shù)的區(qū)間:
(1)y=3cos(2x-$\frac{π}{3}$),x∈R;
(2)y=3sin($\frac{π}{6}$-$\frac{x}{3}$),x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ex-ax-b,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(I)當(dāng)b=-a時(shí),求f(x)的極小值;
(Ⅱ)當(dāng)f(x+1)+a≥0時(shí),對(duì)x∈R恒成立,求ab的最大值;
(Ⅲ)當(dāng)a>0,b=-a時(shí),設(shè)f'(x)為f(x)的導(dǎo)函數(shù),若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2,且x1<x2,求證:f(3lna)>f′($\frac{{2{x_1}{x_2}}}{{{x_1}+{x_2}}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若$\frac{1}{cosθ}$-$\frac{1}{sinθ}$=1,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)Z=$\frac{2+4i}{1+i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)是( 。
A.(1,3)B.(-1,3)C.(3,-1)D.(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案