5.已知O是坐標(biāo)原點(diǎn),A,B分別是函數(shù)y=sinπx以O(shè)為起點(diǎn)的一個(gè)周期內(nèi)的最大值點(diǎn)和最小值點(diǎn).則tan∠OAB=$\frac{4}{3}$.

分析 根據(jù)題意畫出圖形,結(jié)合圖形,利用函數(shù)y=sinπx的對(duì)稱性得出∠OAB=2∠OAC,結(jié)合二倍角公式求出tan∠OAB的值.

解答 解:如圖所示;

O是坐標(biāo)原點(diǎn),A,B分別是函數(shù)y=sinπx以O(shè)為起點(diǎn)的一個(gè)周期內(nèi)的最大值點(diǎn)和最小值點(diǎn),
∴AB過點(diǎn)D,且∠OAB=2∠OAC;
又A($\frac{1}{2}$,1),
∴tan∠OAC=$\frac{1}{2}$,
∴tan∠OAB=$\frac{2tan∠OAC}{1{-tan}^{2}∠OAC}$=$\frac{2×\frac{1}{2}}{1{-(\frac{1}{2})}^{2}}$=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了直角三角形中邊角關(guān)系的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“對(duì)任意的x∈R,x3-x+1≤0”的否定是(  )
A.不存在x∈R,x3-x+1≤0B.存在x∈R,x3-x+1≤0
C.對(duì)任意的x∈R,x3-x+1>0D.存在x∈R,x3-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)-4.
(Ⅰ)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點(diǎn),求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知四棱錐P-ABCD的頂點(diǎn)都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD為正三角形,AB=2AD=4,則球O的表面積為( 。
A.$\frac{56π}{3}$B.$\frac{64π}{3}$C.24πD.$\frac{80π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等差數(shù)列{an}滿足:a2=2,Sn-Sn-3=54(n>3),Sn=100,則n=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函數(shù)y=f(x)+k的圖象與x軸恰有三個(gè)不同交點(diǎn),則k的取值范圍是( 。
A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,若它們的中位數(shù)相同,則甲組數(shù)據(jù)的平均數(shù)為( 。
A.32B.33C.34D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出S=( 。
A.$\frac{4}{9}$B.$\frac{5}{11}$C.$\frac{6}{13}$D.$\frac{36}{55}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.化簡(jiǎn):$\frac{1}{cos80°}$-$\frac{\sqrt{3}}{sin80°}$=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案