14.0∈N,$\sqrt{5}$∉Q,$\sqrt{16}$∈N*,$3\frac{1}{2}$∉ Z.

分析 分析給定元素的分類,進而可得元素與集合的關鍵.

解答 解:0是自然數(shù),故0∈N,
$\sqrt{5}$是無理數(shù),故$\sqrt{5}$∉Q,
$\sqrt{16}$=4是正整數(shù),故$\sqrt{16}$∈N*,
$3\frac{1}{2}$是分數(shù),故$3\frac{1}{2}$∉Z;
故答案為:∈,∉,∈,∉

點評 本題考查的知識點是元素與集合關系的判斷,熟練掌握各種數(shù)集的字母表示,是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.判斷函數(shù)y=$\frac{{a}^{x}-1}{{a}^{x}+1}+ln\frac{{a}^{x}-1}{{a}^{x}+1}$的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,在邊長為a的正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點,現(xiàn)沿SE,SF及EF把這個正方形折成一個三棱錐,使G1,G2,G3三點重合,重合點記為G,則點G到平面SEF的距離為$\frac{a}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在等差數(shù)列{an}中,若a8=-3,a10=1,則an=2n-19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上存在一點 P滿足$∠{A}{P}F=\frac{π}{2}$,F(xiàn)為橢圓的左焦點,A為橢圓的右頂點,則橢圓的離心率的范圍是( 。
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若數(shù)列{an}為等比數(shù)列,且a1=2,S3=26,則公比q=3或-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當x∈(0,1]時,f(x)=1-2|x-$\frac{1}{2}$|,則函數(shù)g(x)=f[f(x)]-$\frac{4}{3}$x在區(qū)間[-2,2]內不同的零點個數(shù)是( 。
A.5B.6C.7D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知圓C的圓心在直線y=x+1上,半徑為$\sqrt{2}$,且圓C經過點P(5,4)
(1)求圓C的標準方程;
(2)求過點A(1,0)且與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設點M(0,-5),N(0,5),△MNP的周長為36,則△MNP的頂點P的軌跡方程為( 。
A.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(x≠0)B.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0)
C.$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1(y≠0)D.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(y≠0)

查看答案和解析>>

同步練習冊答案