【題目】已知函數(shù).
(1)若對任意,恒成立,求的取值范圍;
(2)若函數(shù)有兩個不同的零點,,證明:.
【答案】(1),(2)證明見解析
【解析】
(1)對任意,恒成立,可變形為,因此只要求得的最大值即可,這可由導(dǎo)數(shù)的知識求解;
(2)首先利用導(dǎo)數(shù)研究的單調(diào)性,確定零點分布,不妨設(shè),得,然后用分析法轉(zhuǎn)化所要證不等式為,由,這時以退為進,證明,即證,現(xiàn)在可構(gòu)造函數(shù),.證明,這又可用導(dǎo)數(shù)證明.
(1)解:由對任意恒成立,得對任意恒成立.
令,則.
令,則.
在上,,單調(diào)遞增;在上,,單調(diào)遞減.
故,
則,即的取值范圍為.
(2)證明:設(shè),,則.
在上,,單調(diào)遞增;在上,,單調(diào)遞減.
∵,,當(dāng)時,,且,
∴,.
要證,即證.
∵,,在上單調(diào)遞減,
∴只需證明.
由,只需證明.
令,.
,
∵,∴,,
∴,
∴在上單調(diào)遞增,
∴,
即,∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校中小學(xué)生人數(shù)和近視情況分別如圖所示.為了解該校中小學(xué)生的近視形成原因,用分層抽樣的方式從中抽取一個容量為50的樣本進行調(diào)查.
(1)求樣本中高中生、初中生及小學(xué)生的人數(shù);
(2)從該校初中生和高中生中各隨機抽取1名學(xué)生,用頻率估計概率,求恰有1名學(xué)生近視的概率;
(3)假設(shè)高中生樣本中恰有5名近視學(xué)生,從高中生樣本中隨機抽取2名學(xué)生,用表示2名學(xué)生中近視的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:和定點,是圓上任意一點,線段的垂直平分線交于點,設(shè)動點的軌跡為.
(1)求的方程;
(2)過點作直線與曲線相交于,兩點(,不在軸上),試問:在軸上是否存在定點,總有?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解運動健身減肥的效果,某健身房調(diào)查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經(jīng)過四個月的健身后,他們的體重情況如三維餅圖(2)所示.對比健身前后,關(guān)于這20名肥胖者,下面結(jié)論不正確的是( )
A.他們健身后,體重在區(qū)間[90kg,100kg)內(nèi)的人數(shù)不變
B.他們健身后,體重在區(qū)間[100kg,110kg)內(nèi)的人數(shù)減少了4人
C.他們健身后,這20位健身者體重的中位數(shù)位于[90kg,100kg)
D.他們健身后,原來體重在[110kg,120kg]內(nèi)的肥胖者體重都至少減輕了10kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.證明:
(1)存在唯一x0∈(0,1),使f(x0)=0;
(2)存在唯一x1∈(1,2),使g(x1)=0,且對(1)中的x0,有x0+x1<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值;
(2)已知關(guān)于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線交拋物線于和兩點.
(1)當(dāng)時,求直線的方程;
(2)若過點且垂直于直線的直線與拋物線交于兩點,記與的面積分別為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com