【題目】下圖是古希臘數(shù)學家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點與的中點重合,斜邊在直線上.已知的中點,現(xiàn)將該圖形繞直線旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )

A. B. C. D.

【答案】C

【解析】

把陰影部分旋轉(zhuǎn)后形成的幾何體體積分成三個部分來求即得解.

左上方的陰影部分旋轉(zhuǎn)后形成的幾何體體積等于半球的體積減去一個三棱錐的體積,

所以;

右上方的陰影部分旋轉(zhuǎn)后形成的幾何體體積等于圓柱的體積減去半個球的體積,

所以;

右下方的陰影部分旋轉(zhuǎn)后形成的幾何體體積等于圓臺的體積減去一個圓柱的體積,

所以.

故陰影部分旋轉(zhuǎn)后形成的幾何體積為.

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為中心,以坐標軸為對稱軸的幫圓C經(jīng)過點M(2,1),N.

(1)求橢圓C的標準方程;

(2)經(jīng)過點M作傾斜角互補的兩條直線,分別與橢圓C相交于異于M點的AB兩點,當△AMB面積取得最大值時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進行調(diào)查,得到如下的列聯(lián)表.

分類意識強

分類意識弱

合計

試點后

試點前

合計

已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.

1)請將上面的列聯(lián)表補充完整;

2)判斷是否有的把握認為居民分類意識的強弱與政府宣傳普及工作有關(guān)?說明你的理由;

參考公式:,其中.

下面的臨界值表僅供參考

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某集團公司計劃從甲分公司中的3位員工、和乙分公司中的3位員工、選擇2位員工去國外工作.

(1)若從這6名員工中任選2名,求這2名員工都是甲分公司的概率;

(2)若從甲分公司和乙分公司中各任選1名員工,求這2名員工包括但不包括的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,拋物線,點,設(shè)直線交于不同的兩點、.

(1)若直線軸,求直線的斜率的取值范圍;

(2)若直線不垂直于軸,且,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在三棱錐中,是直角三角形,,,點、、分別為、的中點.

1)求證:;

2)求直線與平面所成的角的正弦值;

3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

①命題“2是素數(shù)且5是素數(shù)”是真命題

②命題“若x=y,則sinx=siny”的逆命題是真命題

③命題“x0∈R,x02﹣x0﹣2>0”的否定是“x∈R,x2﹣x﹣2≤0”

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.

1)若圓軸相切,求圓的方程;

2)已知,圓軸相交于兩點(點在點的左側(cè)).過點任作一條與軸不重合的直線與圓相交于兩點.問:是否存在實數(shù),使得?若存在,求出實數(shù)的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

車流量×(萬輛)

50

51

54

57

58

PM2.5的濃度(微克/立方米)

60

70

74

78

79

1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)若周六同一時間段的車流量是25萬輛,試根據(jù)(1)求出的線性回歸方程,預測此時PM2.5的濃度為多少(保留整數(shù))?

參考公式:由最小二乘法所得回歸直線的方程是:,其中,

查看答案和解析>>

同步練習冊答案