16.sin(-$\frac{17π}{6}$)+cos(-$\frac{20π}{3}$)+tan(-$\frac{53π}{6}$)=-1+$\frac{\sqrt{3}}{3}$.

分析 利用誘導(dǎo)公式以及特殊角的三角函數(shù)化簡(jiǎn)求解即可.

解答 解:sin(-$\frac{17π}{6}$)+cos(-$\frac{20π}{3}$)+tan(-$\frac{53π}{6}$)=-sin$\frac{π}{6}$+cos$\frac{4π}{3}$-tan$\frac{5π}{6}$=$-\frac{1}{2}$$-\frac{1}{2}$+$\frac{\sqrt{3}}{3}$=-1+$\frac{\sqrt{3}}{3}$;
故答案為:-1+$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及特殊角的三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知正四棱錐P-ABCD的各頂點(diǎn)在同一個(gè)球O的球面上,且該棱錐的體積為$\frac{{3\sqrt{2}}}{2}$,底面邊長(zhǎng)為$\sqrt{3}$,則球O的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:x-sinx<tanx-x,$x∈(0\;,\;\frac{π}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.做投擲2個(gè)骰子試驗(yàn),用(x,y)表示點(diǎn)P的坐標(biāo),其中x表示第1個(gè)骰子出現(xiàn)的點(diǎn)數(shù),y表示第2個(gè)骰子出現(xiàn)的點(diǎn)數(shù),則點(diǎn)P的坐標(biāo)(x,y)滿足16<x2+y2≤25的概率為( 。
A.$\frac{7}{36}$B.$\frac{4}{21}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l1:4x-3y+6=0和直線l2:x=-1,拋物線y2=4x上有一個(gè)動(dòng)點(diǎn)P,求點(diǎn)P到直線l1和直線l2的距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知${({\sqrt{x}-\frac{1}{{2\root{4}{x}}}})^n}$的展開式中的二項(xiàng)式系數(shù)之和為256.
(Ⅰ)證明:展開式中沒有常數(shù)項(xiàng);
(Ⅱ)求展開式中所有有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為F(0,-$\sqrt{2}}$),點(diǎn)M(1,$\sqrt{2}}$)在橢圓C上
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:2x-y-2=0與橢圓C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)f(x)=$\frac{e^x}{{1+a{x^2}}}$,其中a為正實(shí)數(shù).
(1)求證:直線y=x+1恒為曲線f(x)=$\frac{e^x}{{1+a{x^2}}}$的切線;
(2)當(dāng)a=$\frac{4}{3}$時(shí),求f(x)的極值點(diǎn);
(3)若f(x)為R上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.觀察下列等式
$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i=cos$\frac{π}{3}$+isin$\frac{π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3=cosπ+isinπ,
($\frac{1}{2}$+$\frac{\sqrt{4}}{2}$i)4=cos$\frac{4π}{3}$+isin $\frac{4π}{3}$,

照此規(guī)律,可以推測(cè)對(duì)于任意的n∈N*,($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)n=cos$\frac{n}{3}$π+isin$\frac{n}{3}$π.

查看答案和解析>>

同步練習(xí)冊(cè)答案