17.已知m∈[0,3],則函數(shù)f(x)=2|x|-m存在零點的概率為( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

分析 根據(jù)函數(shù)f(x)=2|x|-m存在零點時,f(x)≤0,由此求出m的取值范圍,再由幾何概型的計算公式求出對應(yīng)的概率值.

解答 解:∵m∈[0,3],且當(dāng)函數(shù)f(x)=2|x|-m存在零點時,f(x)≤0,
即2|x|-m≤0,
∴2|x|≤m;
又2|x|的最小值是1,
∴m≥1,
即1≤m≤3;
∴所求的概率為P=$\frac{3-1}{3-0}$=$\frac{2}{3}$.
故選:C.

點評 本題考查了利用幾何概型計算對應(yīng)概率值的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對兩個分類變量進(jìn)行獨立性檢驗的主要作用是( 。
A.判斷模型的擬合效果
B.對兩個變量進(jìn)行相關(guān)分析
C.給出兩個分類變量有關(guān)系的可靠程度
D.估計預(yù)報變量的平均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.規(guī)定 $C_x^m=\frac{x(x-1)…(x-m+1)}{m!}$,其中x∈R,m是正整數(shù),這是組合數(shù)$C_n^m$(m、n是正整數(shù),且m≤n)的一種推廣.設(shè)x>0,則$\frac{C_x^3}{{{{(C_x^1)}^2}}}$最小值$\frac{\sqrt{2}}{3}$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個不同的單位分?jǐn)?shù)之和.
如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,
1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,
1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,
依此類推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,
其中m≤n,m,n∈N*.設(shè)1≤x≤m,1≤y≤n,則$\frac{x+y+2}{x+1}$的最小值為$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正六邊形ABCDEF中,G、H、I、J、K、L分別為AB、BC、CD、DE、EF、FA的中點,圓O為六邊形GHIJKL的內(nèi)切圓,則在正六邊形ABCDEF中投擲一點,該點不落在圓O內(nèi)的概率為( 。
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{8}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.一機(jī)器可以按不同的速度運轉(zhuǎn),其生產(chǎn)物件有一些會有缺點,每小時生產(chǎn)有缺點物件的多少是隨機(jī)器運轉(zhuǎn)速度而變化,用x表示轉(zhuǎn)速(單位:轉(zhuǎn)/秒),用y表示平均每小時生產(chǎn)的有缺點物件的個數(shù),現(xiàn)觀測得到(x,y)的五組觀測值為:
(2,2.2)(3,3.8)(4,5.5)(5,6.5)(6,7)
若由資料知y對x呈線性相關(guān)關(guān)系,試求:
(1)線性回歸方程
(2)若實際生產(chǎn)中所允許的平均每小時有缺點的物件數(shù)不超過10,則機(jī)器的速度每秒不得超過多少轉(zhuǎn)?(結(jié)果取整數(shù))
有關(guān)公式:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\bar y})}}}{{\sum_{i=1}^n{{{({{x_i}-\bar x})}^2}}}}\bar=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\bar x}^2}}}},a=\bar y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(x+1)-ax在(0,f(0))處的切線與函數(shù)y=$\frac{1}{2}{x^2}$相切.
(1)求f(x)的單調(diào)區(qū)間;
(2)若(k+1)(x-1)<xf(x-1)+x2(k∈Z)對任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx-ax2+x,其中a為常數(shù),e為自然對數(shù)的底數(shù)
(1)當(dāng)a=1時,求函數(shù)f(x)的最值;
(2)若函數(shù)g(x)=$\frac{f(x)}{x}$在區(qū)間(1,e)內(nèi)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知(a+1)x-1-lnx≤0對于任意x∈[$\frac{1}{2}$,2]恒成立,則a的最大值為1-2ln2.

查看答案和解析>>

同步練習(xí)冊答案