4.已知函數(shù)f(x)=ex+a,x∈[m,n]的值域?yàn)閇2m,2n],則a的取值范圍是(-∞,-2+2ln2).

分析 由題意可得m,n為ex+a=2x的兩個(gè)不等實(shí)根,根據(jù)導(dǎo)數(shù)的幾何意義求出切線方程,即可判斷a的范圍

解答 解:f(x)=ex+a在∈[m,n]上為增函數(shù),
∴f(x)∈[em+a,en+a],
∵函數(shù)f(x)=ex+a,x∈[m,n]的值域?yàn)閇2m,2n],
∴$\left\{\begin{array}{l}{{e}^{m}+a=2m}\\{{e}^{n}+a=2n}\end{array}\right.$,
∴m,n為ex+a=2x的兩個(gè)不等實(shí)根,
即y=ex,y=2x-a有兩個(gè)不同的交點(diǎn),
設(shè)切點(diǎn)為(x0,y0),
∵y′=ex,
∴e${\;}^{{x}_{0}}$=2
∴x0=ln2,
∴y0=2,
∴-a>2-2ln2,
即a<-2+2ln2,
故答案為:(-∞,-2+2ln2).

點(diǎn)評(píng) 本題考查了函數(shù)的值域和函數(shù)的單調(diào)性以及函數(shù)零點(diǎn)的問(wèn)題,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,橫梁的橫斷面是一個(gè)矩形,而橫梁的強(qiáng)度和它的矩形橫斷面的寬與高的平方的乘積成正比,要將直徑為d的圓木鋸成強(qiáng)度最大的橫梁,則橫斷面的高和寬分別為( 。
A.$\sqrt{3}$d,$\frac{\sqrt{3}}{3}$dB.$\frac{\sqrt{3}}{3}$d,$\frac{\sqrt{6}}{3}$dC.$\frac{\sqrt{6}}{3}$d,$\frac{\sqrt{3}}{3}$dD.$\frac{\sqrt{6}}{3}$d,$\sqrt{3}$d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是(  )
A.y=2cos2xB.y=2sin2xC.y=1+sin(2x+$\frac{π}{4}$)D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=logax+1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線$\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,則$\frac{1}{m}$+$\frac{1}{n}$=4;m+2n的最小值為$\frac{2\sqrt{2}+3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若復(fù)數(shù)z滿足|z|=2,則$|1+\sqrt{3}i+z|$的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.以下四個(gè)命題中,真命題是( 。
A.?x∈(0,π),sinx=tanx
B.條件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,條件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$,則p是q的必要不充分條件
C.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
D.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知等差數(shù)列$\{a_n^{\;}\}$的前n項(xiàng)和為Sn,若a2+a8+a11=30,求S13=( 。
A.130B.65C.70D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知tanθ=2,則2sin2θ+sinθcosθ=( 。
A.2B.$\frac{5}{6}$C.-$\frac{3}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)X,Y分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記ξ=|X-Y|,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ)

查看答案和解析>>

同步練習(xí)冊(cè)答案