分析 (1)要證明AC⊥BN,只要證明AC⊥平面NDB,而由已知可知AC⊥BD,則只要證出AC⊥DN,結(jié)合已知容易證明;
(2)三棱錐A-BCM的體積V三棱錐A-BCM=V三棱錐M-ABC,由此求出體積.
解答 解:(1)證明:如圖所示,
連接BD,則AC⊥BD;
由已知MA⊥平面ABCD,DN∥AM,
所以DN⊥平面ABCD,
所以DN⊥AC;
又因?yàn)镈N∩DB=D,
所以AC⊥平面NDB.
又因?yàn)锽N?平面NDB,
所以AC⊥BN;
(2)三棱錐A-BCM的體積為
V三棱錐A-BCM=V三棱錐M-ABC
=$\frac{1}{3}$•MA•S△ABC
=$\frac{1}{3}$•MA•$\frac{1}{2}$V菱形ABCD
=$\frac{1}{3}$×3×$\frac{1}{2}$×42×sin60°
=4$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了線面垂直、線面平行的應(yīng)用問題,也考查了求三棱錐體積的應(yīng)用問題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20x-8y-9=0 | B. | 10x-4y-5=0 | C. | 5y-2y-3=0 | D. | 15x-6y-11=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com