19.已知f(n)=22n+2-3n-4,存在正整數(shù)m,使n∈N*時,能使m整除f(n),則m的最大值為9.

分析 計算f(1),f(2),f(3),即可求出m的最大值.

解答 解:f(1)=24-3-4=9,
f(2)=26-6-4=9×6,
f(3)=28-9-4=9×27,
故m的最大值為9.
故答案為:9.

點(diǎn)評 本題考查證明整除問題的方法,考查學(xué)生的推理能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴(yán)重的污染過程.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間星期一星期二星期三星期四星期五星期六星期日
車流量x(萬輛)1234567
PM2.5的濃度y(微克/立方米)27313541495662
(1)在表中,畫出車流量和PM2.5濃度的散點(diǎn)圖;
(2)求y關(guān)于x的線性回歸方程;
(3)(i)利用所求的回歸方程,預(yù)測該市車流量為8萬輛時,PM2.5的濃度;
(ii)規(guī)定當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)活為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)(結(jié)果以萬輛為單位,保留整數(shù))?
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{x}$=$\overline{y}$=$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知sinα=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$).
(1)求tanα的值;
(2)求cos(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8
  …
觀察上述等式,由以上等式推測:對于n∈N﹡,若(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,則 a2n-2=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在菱形ABCD中,MA⊥平面ABCD,且四邊形ADNM是平行四邊形.已知MA=3,AD=4,∠BAD=60°.
(1)求證:AC⊥BN;
(2)求三棱錐A-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲、乙、丙三位同學(xué)被問到是否去過洪湖購物公園新開張的三個服裝店,衣姿秀,魔美名作,七匹狼.
甲說:我去過的服裝店比乙多,但沒去過服裝店:衣姿秀
乙說:我沒去過服裝店:七匹狼
丙說:我們?nèi)巳ミ^同一個服裝店.
由此可判斷乙去過的服裝店為魔美名作(填店名)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將編號為1至12的12本書分給甲、乙、丙三人,每人4本.
甲說:我擁有編號為1和3的書;
乙說:我擁有編號為8和9的書;
丙說:我們?nèi)烁髯該碛械臅木幪栔拖嗟龋?br />據(jù)此可判斷丙必定擁有的書的編號是(  )
A.2和5B.5和6C.2和11D.6和11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)P1(-2,3),P2(0,1),圓C是以P1P2的中點(diǎn)為圓心,$\frac{1}{2}$|P1P2|為半徑的圓.
(Ⅰ)若圓C的切線在x軸和y軸上截距相等,求切線方程;
(Ⅱ)若P(x,y)是圓C外一點(diǎn),從P向圓C引切線PM,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a+b=5,ab=3,求a2+b2及|a-b|的值.

查看答案和解析>>

同步練習(xí)冊答案