A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
分析 由雙曲線的定義及等差數(shù)列的性質(zhì),即可求得m=2c-2a,n=2c-4a,利用余弦定理即可求得關(guān)于e的一元二次方程,由e>1,即可求得該雙曲線的離心率.
解答 解:設(shè)|PF1|=m,|PF2|=n,由|PF1|是|PF2|和|F1F2|的等差中項(xiàng),∠F1PF2=120°,
則點(diǎn)P在C的右支上,
∴m-n=2a,2|PF1|=|PF2|+|F1F2|,即2m=n+2c,
∴m=2c-2a,n=2c-4a,
由余弦定理可知:丨F1F2丨2=|PF1|2+|PF1|2-2|PF1||PF2|cos∠F1PF2,
∴(2c)2=(2c-2a)2+(2c-4a)2-2•(2c-2a)•(2c-4a)cos120°,
整理得2c2-9ac+2c2=0,由e=$\frac{c}{a}$,
∴2e2-9e+7=0,由e>1,
解得:e=$\frac{7}{2}$,
曲線的離心率為$\frac{7}{2}$,
故選D.
點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),雙曲線的定義,等差數(shù)列的性質(zhì),余弦定理的應(yīng)用,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | -i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 8 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $?{x_0}∈[{0,+∞}),{2^{x_0}}≥{x_0}^2$ | B. | $?{x_0}∈({-∞,0}),{2^{x_0}}≥{x_0}^2$ | ||
C. | ?x∈(-∞,0),2x≥x2 | D. | ?x∈[0,+∞),2x<x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com