【題目】已知函數(shù)

(I)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求實數(shù)的取值范圍;

(II)是否存在實數(shù),使得函數(shù)圖像與直線有兩個交點?若存在,求出所有的值;若不存在,請說明理由.

【答案】(I);(II)存在,.

【解析】

(I)先求出函數(shù)在區(qū)間上是單調(diào)函數(shù)的實數(shù)的取值范圍,然后取補集即可;

(II)函數(shù)圖像與直線有兩個交點等價于有兩個實根,令,研究函數(shù)的圖象與x軸的位置關系即可.

解:(I)由題意得.

要使函數(shù)在區(qū)間上單調(diào)遞增,即要使在區(qū)間上恒成立.

,∴;

要使函數(shù)在區(qū)間上單調(diào)遞減,即要使在區(qū)間上恒成立.

,∴;

∴函數(shù)在區(qū)間上不是單調(diào)函數(shù),實數(shù)的取值范圍.

(II)由有兩個實根

時, 函數(shù)是增函數(shù),不合題意;

時,函數(shù)上是增函數(shù);在上是減函數(shù)

要使函數(shù)有兩個零點則只需解得不合題意;

時,函數(shù)上是增函數(shù);在上是減函數(shù)

要使函數(shù)有兩個零點則只需解得

綜上所述,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設取得巨大進步,農(nóng)民年收入也逐年增加.為了制定提升農(nóng)民年收入、實現(xiàn)2020年脫貧的工作計劃,該地扶貧辦統(tǒng)計了201950位農(nóng)民的年收入并制成如下頻率分布直方圖:

1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入元(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

2)由頻率分布直方圖,可以認為該貧困地區(qū)農(nóng)民年收入X服從正態(tài)分布,其中近似為年平均收入近似為樣本方差,經(jīng)計算得,利用該正態(tài)分布,求:

i)在扶貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的84.14%的農(nóng)民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?

ii)為了調(diào)研精準扶貧,不落一人的政策要求落實情況,扶貧辦隨機走訪了1000位農(nóng)民.若每位農(nóng)民的年收入互相獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附參考數(shù)據(jù):,若隨機變量X服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.

(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列是首項為0的遞增數(shù)列, ,滿足:對于任意的總有兩個不同的根,則的通項公式為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形.現(xiàn)隨機地向大正方形內(nèi)部區(qū)域投擲飛鏢,若飛鏢落在小正方形區(qū)域的概率是,則直角三角形的兩條直角邊長的比是(長邊:短邊)(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某校高一1000名學生的物理成績,隨機抽查了部分學生的期中考試成績,將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.

1)估計該校高一學生物理成績不低于80分的人數(shù);

2)若在本次考試中,規(guī)定物理成績在m分以上(包括m分)的為優(yōu)秀,該校學生物理成績的優(yōu)秀率大約為18%,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】萬眾矚目的2018年俄羅斯世界杯決賽于北京時間201871523時在俄羅斯莫斯科的盧日尼基體育場進行.為確?倹Q賽的順利進行,組委會決定在比賽地點盧日尼基球場外臨時圍建一個矩形觀眾候場區(qū),總面積為(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個長度為的入口.現(xiàn)已知鐵欄桿的租用費用為100元/.設該矩形區(qū)域的長為(單位:),租用鐵欄桿的總費用為(單位:元).

1)將表示為的函數(shù);

2)試確定,使得租用此區(qū)域所用鐵欄桿所需費用最小,并求出最小費用.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某機械廠欲從米,米的矩形鐵皮中裁剪出一個四邊形加工成某儀器的零件,裁剪要求如下:點分別在邊上,且,.設,四邊形的面積為(單位:平方米).

(1)求關于的函數(shù)關系式,求出定義域;

(2)當的長為何值時,裁剪出的四邊形的面積最小,并求出最小值.

查看答案和解析>>

同步練習冊答案