A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{3}$ | D. | $\frac{23}{27}$ |
分析 由同角三角函數(shù)基本關(guān)系可得sinα和sin(α+β),由兩角差的余弦公式可得cosβ的值,然后再由同角三角函數(shù)基本關(guān)系和兩角差的余弦公式可得.
解答 解:∵α,β為銳角,∴0<α+β<π,
∵cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{2\sqrt{2}}{3}$,
∴cosβ=cos[(α+β)-α]
=cos(α+β)cosα+sin(α+β)sinα
=$-\frac{1}{3}×\frac{1}{3}+\frac{2\sqrt{2}}{3}×\frac{2\sqrt{2}}{3}$=$\frac{7}{9}$,
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{4\sqrt{2}}{9}$,
∴cos(α-β)=cosαcosβ+sinαsinβ
=$\frac{1}{3}×\frac{7}{9}+\frac{2\sqrt{2}}{3}×\frac{4\sqrt{2}}{9}$=$\frac{23}{27}$.
故選:D.
點(diǎn)評 本題考查兩角和與差的三角函數(shù)公式,涉及同角三角函數(shù)的基本關(guān)系,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∉∁RQ,x0∈Q | B. | ?x0∈∁RQ,x0∈Q | C. | ?x∉∁RQ,x∉Q | D. | ?x∈∁RQ,x∉Q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,1] | C. | (-∞,-1) | D. | (-∞,-1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com