3.已知銳角α,β滿足:cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,則cos(α-β)=( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{3}$D.$\frac{23}{27}$

分析 由同角三角函數(shù)基本關(guān)系可得sinα和sin(α+β),由兩角差的余弦公式可得cosβ的值,然后再由同角三角函數(shù)基本關(guān)系和兩角差的余弦公式可得.

解答 解:∵α,β為銳角,∴0<α+β<π,
∵cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{2\sqrt{2}}{3}$,
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{2\sqrt{2}}{3}$,
∴cosβ=cos[(α+β)-α]
=cos(α+β)cosα+sin(α+β)sinα
=$-\frac{1}{3}×\frac{1}{3}+\frac{2\sqrt{2}}{3}×\frac{2\sqrt{2}}{3}$=$\frac{7}{9}$,
∴sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{4\sqrt{2}}{9}$,
∴cos(α-β)=cosαcosβ+sinαsinβ
=$\frac{1}{3}×\frac{7}{9}+\frac{2\sqrt{2}}{3}×\frac{4\sqrt{2}}{9}$=$\frac{23}{27}$.
故選:D.

點(diǎn)評 本題考查兩角和與差的三角函數(shù)公式,涉及同角三角函數(shù)的基本關(guān)系,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x,則f(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$,滿足:|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$)=-1
(1)求:$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|;
(3)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在區(qū)間[0,5]上任取一個(gè)實(shí)數(shù)a,則使得不等式x+$\frac{1}{x-1}$≥a對所有x∈(1,+∞)恒成立的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)y=sin3x+cos3x在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=x2-4x+2,遞增的等差數(shù)列{an}滿足a1=f(x+1),a2=0,a3=f(x-1)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an-2n,試求滿足b1+b2+…+bn<2015的最大自然數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{a}$-$\overrightarrow$|=1,則|$\overrightarrow$|的取值范圍是[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題“?x0∈∁RQ,x0∈Q”的否定是( 。
A.?x0∉∁RQ,x0∈QB.?x0∈∁RQ,x0∈QC.?x∉∁RQ,x∉QD.?x∈∁RQ,x∉Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.集合A={(x,y)|y=lg(x+1)-1},B={(x,y)|x=m},若A∩B=∅,則實(shí)數(shù)m的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

同步練習(xí)冊答案