A. | 2k+1項(xiàng) | B. | 2k項(xiàng) | C. | k+1項(xiàng) | D. | k項(xiàng) |
分析 首先分析題目證明不等式1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n+1}-1}$>$\frac{n+1}{2}$(n∈N*),假設(shè)n=k時(shí)成立,求當(dāng)n=k+1時(shí),左端增加的項(xiàng)數(shù).故可以分別把n=k+1,n=k代入不等式左邊,使它們相減即可求出項(xiàng)數(shù).
解答 解:當(dāng)n=k時(shí)不等式為:1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k+1}-1}$>$\frac{k+1}{2}$(k∈N*)成立
當(dāng)n=k+1時(shí)不等式左邊為1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k+1}-1}$+$\frac{1}{{2}^{k+1}}+\frac{1}{{2}^{k+1}+1}+…+\frac{1}{{2}^{k+2}-1}$>$\frac{k+2}{2}$,
則左邊增加2k+2-1-2k+1+1=2k+1項(xiàng).
故選:A.
點(diǎn)評 本題主要考查用數(shù)學(xué)歸納法證明不等式的問題,屬于概念性問題,計(jì)算量小,屬于基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 10 | C. | 8 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $?{x_0}∈[{0,+∞}),{2^{x_0}}≥{x_0}^2$ | B. | $?{x_0}∈({-∞,0}),{2^{x_0}}≥{x_0}^2$ | ||
C. | ?x∈(-∞,0),2x≥x2 | D. | ?x∈[0,+∞),2x<x2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com