A. | $[-π,-\frac{5π}{6}]$ | B. | $[-\frac{5π}{6},-\frac{π}{6}]$ | C. | $[-\frac{π}{6},0]$ | D. | $[-\frac{π}{3},0]$ |
分析 利用兩角和差的正弦公式化簡函數(shù)的解析式,再利用正弦函數(shù)的增區(qū)間,求得函數(shù)$f(x)=sinx-\sqrt{3}cosx(x∈[-π,0])$的單調(diào)遞增區(qū)間.
解答 解:函數(shù) f(x)=sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$),令2kπ-$\frac{π}{2}$≤x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得2kπ-$\frac{π}{6}$≤x≤2kπ+$\frac{5π}{6}$,
的單調(diào)遞增區(qū)間[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z.
結(jié)合x∈[-π,π],可得函數(shù)的增區(qū)間為[-$\frac{π}{6}$,0],
故選:C.
點(diǎn)評 本題主要考查兩角和差的正弦公式,正弦函數(shù)的增區(qū)間,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow a≠-\overrightarrow b$,則$|{\overrightarrow a}|≠|(zhì){\overrightarrow b}|$ | B. | 若$\overrightarrow a=-\overrightarrow b$,則$|{\overrightarrow a}|≠|(zhì){\overrightarrow b}|$ | C. | 若$|{\overrightarrow a}|≠|(zhì){\overrightarrow b}|$,則$\overrightarrow a≠-\overrightarrow b$ | D. | 若$|{\overrightarrow a}|=|{\overrightarrow b}|$,則$\overrightarrow{a}$=-$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com