14.已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$<$\frac{n}{2}$(n∈N*).

分析 (1)推導(dǎo)出an+1+1=2(an+1),從而{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列,由此能求出數(shù)列{an}的通項(xiàng)公式.
(2)由$\frac{{a}_{n}}{{a}_{n+1}}=\frac{{2}^{n}-1}{{2}^{n+1}-1}$<$\frac{{2}^{n}-1}{2•{2}^{n}-1-1}$=$\frac{{2}^{n}-1}{2({2}^{n}-1)}$=$\frac{1}{2}$,能$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$<$\frac{n}{2}$(n∈N*).

解答 (本小題10分)
解:(1)∵數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*),
∴an+1+1=2(an+1),…(3分)
∴{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列.
∴${a}_{n}+1={2}^{n}$.
∴數(shù)列{an}的通項(xiàng)公式為${a}_{n}={2}^{n}-1$.…(5分)
證明:(2)∵$\frac{{a}_{n}}{{a}_{n+1}}=\frac{{2}^{n}-1}{{2}^{n+1}-1}$<$\frac{{2}^{n}-1}{2•{2}^{n}-1-1}$=$\frac{{2}^{n}-1}{2({2}^{n}-1)}$=$\frac{1}{2}$,n=1,2,…,n,…(8分)
∴:$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$<$\frac{n}{2}$(n∈N*).   …(10分)

點(diǎn)評(píng) 本題考查數(shù)列通項(xiàng)公式的求法,考查數(shù)列不等式的證明,考查運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.離散型隨機(jī)變量ξ的分布列為:
ξ123
pp1p2$\frac{1}{4}$
且Eξ=2,則p1=$\frac{1}{4}$;p2=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求函數(shù)y=tan(3x-$\frac{π}{4}$)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=45,則a5=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=ax2+8x+b(a,b為互不相等的正整數(shù)),方程f(x)=0的兩個(gè)實(shí)根為x1,x2(x1≠x2),且|x1|<1,|x2|<1,若f(1)+f(-1)的最大值與最小值分別為M,m,則M+m的值為50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)O為△ABC的外心,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OM}$,則M是△ABC的( 。
A.重心(三條中線交點(diǎn))B.內(nèi)心(三條角平分線交點(diǎn))
C.垂心(三條高線交點(diǎn))D.外心(三邊中垂線交點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足an=n2+n,設(shè)bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n+2}}$+…+$\frac{1}{{a}_{2n}}$.
(1)求{bn}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+$\frac{1}{6}$>bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知關(guān)于x,y的方程C:x2+y2-2x-4y+m=0,m∈R.
(1)若方程C表示圓,求m的取值范圍;
(2)若圓C與直線l:4x-3y+7=0相交于M,N兩點(diǎn),且$|MN|=2\sqrt{5}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$f(x)=sinx-\sqrt{3}cosx(x∈[-π,0])$的單調(diào)遞增區(qū)間是( 。
A.$[-π,-\frac{5π}{6}]$B.$[-\frac{5π}{6},-\frac{π}{6}]$C.$[-\frac{π}{6},0]$D.$[-\frac{π}{3},0]$

查看答案和解析>>

同步練習(xí)冊(cè)答案