19.已知函數(shù)f(x)=|x+a|-|x+2|-2a.
(1)當(dāng)a=-1時(shí),求不等式f(x)≤0的解集;
(2)若不等式f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=-1時(shí),函數(shù)f(x)=|x-1|-|x+2|+2,利用零點(diǎn)分段法,分別求出各段上滿足f(x)≤0的x的范圍,綜合討論結(jié)果,可得答案;
(2)若不等式f(x)≤0恒成立,則|x+a|-|x+2|≤2a.即|a-2|≤2a恒成立,解得答案.

解答 解:(1)當(dāng)a=-1時(shí),函數(shù)f(x)=|x-1|-|x+2|+2,
當(dāng)x≤-2時(shí),不等式f(x)≤0可化為:5≤0,恒不成立;
當(dāng)-2<x<1時(shí),不等式f(x)≤0可化為:-2x+1≤0,解得:x≥$\frac{1}{2}$,
故$\frac{1}{2}$≤x<1;
當(dāng)x≥1時(shí),不等式f(x)≤0可化為:-1≤0,恒成立;
綜上可得不等式f(x)≤0的解集為:[$\frac{1}{2}$,+∞);
(2)若不等式f(x)≤0恒成立,
則|x+a|-|x+2|≤2a.
即|a-2|≤2a恒成立,
即-2a≤a-2≤2a恒成立,
解得:a≥$\frac{2}{3}$

點(diǎn)評(píng) 本題考查的知識(shí)是分段函數(shù)的應(yīng)用,恒成立問(wèn)題,分類討論思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$f(x)={x^2}-1,g(x)=\left\{\begin{array}{l}x-1\;(x≥0)\\ 2-x\;(x<0)\end{array}\right.$
(1)求g[f(x)];
(2)設(shè)F(x)=max{f(x),g(x)},作函數(shù)F(x)的圖象,并由此求出F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{{9}^{x}+{3}^{x+1}+a}{{3}^{x}}$.
(1)若f(x)是偶函數(shù),求實(shí)數(shù)a的值;
(2)若對(duì)任意x∈[0,+∞),都有f(x)>0,求實(shí)數(shù)a的取值范圍;
(3)若f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,且$c=4\sqrt{2}$,B=45°,面積S=2,則a=1;b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}\right.$,則z=2x-y的最小值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,平行四邊形ABCD中,AB=2AD=2,∠BAD=60°,E為DC的中點(diǎn),那么$\overrightarrow{AC}$與$\overrightarrow{EB}$所成角的余弦值為( 。
A.$\frac{\sqrt{7}}{7}$B.-$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{14}$D.-$\frac{\sqrt{7}}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x-a|+|x|.
(Ⅰ)若a=1,解不等式f(x)>2;
(Ⅱ)若存在x∈R,使得不等式f(x)$≤\frac{{t}^{2}+3}{t+1}$對(duì)任意t>-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知定義在R上的二次函數(shù)f(x)的圖象過(guò)原點(diǎn),且滿足f(x+1)-f(x)=2x+2,函數(shù)g(x)=ax(a>0,a≠1).
(1)求f(x)的解析式;
(2)設(shè)h(x)=-f(x)+bx,當(dāng)a=2時(shí),若對(duì)任意x∈[1,2],都存在x1,x2∈[1,2],使得h(x)≤h(x1),g(x)≤g(x2),且h(x1)=g(x2),求實(shí)數(shù)b的值;
(3)若關(guān)于x的方程f(x)=g(2x)恰有一實(shí)數(shù)解x0,且x0∈($\frac{1}{4}$,$\frac{1}{2}$),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的函數(shù)f(x)=$\frac{g(x)}{{2}^{x}}$,g(x)=g(2-x)•4x-1,若f(x)在[1,+∞)為增函數(shù),則( 。
A.g(1)>2g(0)B.g(3)>8g(0)C.g(2)>2g(0)D.g(4)<16g(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案