A. | [-$\frac{π}{3}$,0] | B. | [0,$\frac{π}{3}$] | C. | [$\frac{π}{12}$,$\frac{π}{2}$] | D. | [$\frac{π}{2}$,$\frac{5π}{6}$] |
分析 由周期求得ω,再根據(jù)正弦函數(shù)的減區(qū)間求得函數(shù)f(x)的單調(diào)減區(qū)間.
解答 解:根據(jù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相鄰兩個對稱中心的距離為$\frac{π}{2}$,
可得$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{2}$,∴ω=2,f(x)=sin(2x+$\frac{π}{3}$).
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
故選:C.
點評 本題主要考查正弦函數(shù)的圖象和性質(zhì),正弦函數(shù)的減區(qū)間,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲 | 80 | 81 | 93 | 72 | 88 | 75 | 83 | 84 |
乙 | 82 | 93 | 70 | 84 | 77 | 87 | 78 | 85 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com