【題目】下列關(guān)于相關(guān)系數(shù)的說法不正確的是( )

A. 相關(guān)系數(shù)越大兩個變量間相關(guān)性越強(qiáng);

B. 相關(guān)系數(shù)的取值范圍為

C. 相關(guān)系數(shù)時兩個變量正相關(guān),時兩個變量負(fù)相關(guān);

D. 相關(guān)系數(shù)時,樣本點在同一直線上。

【答案】A

【解析】

根據(jù)相關(guān)系數(shù)的意義對每個結(jié)論進(jìn)行分析、判斷可得錯誤的結(jié)論.

對于相關(guān)系數(shù),有以下結(jié)論:①當(dāng)時,表明兩個變量正相關(guān);當(dāng)時,表明兩個變量負(fù)相關(guān).②的絕對值越接近于1,表明兩個變量的線性相關(guān)性越強(qiáng);的絕對值越接近于0,表明兩個變量之間幾乎不存在線性相關(guān)關(guān)系.

對于A,當(dāng)時此結(jié)論不成立,所以A不正確.

對于B,由相關(guān)系數(shù)的意義可得,所以B正確.

對于C,由相關(guān)系數(shù)的意義可得正確.

對于D,由相關(guān)系數(shù)的意義可得正確.

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)是定義域在R上的奇函數(shù),當(dāng)x0時,fx=x2﹣2x

1)求出函數(shù)fx)在R上的解析式;

2)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實數(shù),,

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全集U=R,若集合A={x|2≤x9}B={x|1x≤6}

1)求(CRA∪B;

2)若集合C={x|ax≤2a+7},且AC,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場經(jīng)營一批進(jìn)價為40元的運動服,經(jīng)市場調(diào)查發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)符合一次函數(shù)模型,且銷售單價為60元時,銷量是600件;當(dāng)銷售單價為64元時,銷量是560.

(1)寫出銷售量y(件)與銷售單價x()之間的函數(shù)關(guān)系式

(2)試求銷售利潤z(元)與銷售單價x()之間的函數(shù)關(guān)系式;

(3)(1)(2)條件下,當(dāng)銷售單價為多少元時,商場能獲得最大利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,點為橢圓上的動點,若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過原點的直線與橢圓 交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點為極點,以軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為:.

(I)若曲線,參數(shù)方程為:(為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程

(Ⅱ)若曲線,參數(shù)方程為 (為參數(shù)),,且曲線,與曲線交點分別為,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,,

(1)證明:;

(2)若,四面體的體積為2,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)求函數(shù)的零點的個數(shù);

(3),若函數(shù)0,內(nèi)有極值,求實數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案