【題目】下列關(guān)于相關(guān)系數(shù)的說法不正確的是( )
A. 相關(guān)系數(shù)越大兩個變量間相關(guān)性越強(qiáng);
B. 相關(guān)系數(shù)的取值范圍為;
C. 相關(guān)系數(shù)時兩個變量正相關(guān),時兩個變量負(fù)相關(guān);
D. 相關(guān)系數(shù)時,樣本點在同一直線上。
【答案】A
【解析】
根據(jù)相關(guān)系數(shù)的意義對每個結(jié)論進(jìn)行分析、判斷可得錯誤的結(jié)論.
對于相關(guān)系數(shù),有以下結(jié)論:①當(dāng)時,表明兩個變量正相關(guān);當(dāng)時,表明兩個變量負(fù)相關(guān).②的絕對值越接近于1,表明兩個變量的線性相關(guān)性越強(qiáng);的絕對值越接近于0,表明兩個變量之間幾乎不存在線性相關(guān)關(guān)系.
對于A,當(dāng)時此結(jié)論不成立,所以A不正確.
對于B,由相關(guān)系數(shù)的意義可得,所以B正確.
對于C,由相關(guān)系數(shù)的意義可得正確.
對于D,由相關(guān)系數(shù)的意義可得正確.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2﹣2x.
(1)求出函數(shù)f(x)在R上的解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是實數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,在上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全集U=R,若集合A={x|2≤x<9},B={x|1<x≤6}.
(1)求(CRA)∪B;
(2)若集合C={x|a<x≤2a+7},且AC,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商場經(jīng)營一批進(jìn)價為40元的運動服,經(jīng)市場調(diào)查發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)符合一次函數(shù)模型,且銷售單價為60元時,銷量是600件;當(dāng)銷售單價為64元時,銷量是560件.
(1)寫出銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)試求銷售利潤z(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(3)在(1)(2)條件下,當(dāng)銷售單價為多少元時,商場能獲得最大利潤?并求出此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,點為橢圓上的動點,若的最大值和最小值分別為和.
(I)求橢圓的方程
(Ⅱ)設(shè)不過原點的直線與橢圓 交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點為極點,以軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為:.
(I)若曲線,參數(shù)方程為:(為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程
(Ⅱ)若曲線,參數(shù)方程為 (為參數(shù)),,且曲線,與曲線交點分別為,求的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷的單調(diào)性;
(2)求函數(shù)的零點的個數(shù);
(3)令,若函數(shù)在(0,)內(nèi)有極值,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com