比較(+1)3-(-1)3與2的大小(n≠0).

答案:
解析:

  解:設(shè)a=,則

  (+1)3-(-1)3=(a+1)3-(a-1)3

  =(a3+3a2+3a+1)-(a3-3a2+3a-1)

 。6a2+2=n2+2.

  ∴(+1)3-(-1)3-2=n2

  ∵n≠0,∴n2>0.

  ∴(+1)3-(-1)3>2.

  思路分析:本題中為一個整體,因而可以用換元法將第一個式子化簡變形,再與2比較大。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<x<1,a>0且a≠
13
,試比較|log3a(1-x)3|與|log3a(1+x)3|的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=-2x-
2
3
與曲線f(x)=
1
3
x3-bx
相切.
(1)求b的值
(2)若方程f(x)=x2+m在(0,+∞)上有兩個解x1,x2
求:①m的取值范圍     ②比較x1x2+9與3(x1+x2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1+ax
1-ax
(a>0且a≠1),g(x)是f(x)的反函數(shù).
(1)求g(x);
(2)當(dāng)x∈[2,6]時,恒有g(x)>loga
t
(x2-1)(7-x)
成立,求t的取值范圍;
(3)當(dāng)0<a≤
1
2
時,試比較f(1)+f(2)+…+f(n)與n+4的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x-xlnx(a>0).
(1)若函數(shù)滿足f(1)=2,且在定義域內(nèi)f(x)≥bx2+2x恒成立,求實數(shù)b的取值范圍;
(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(3)當(dāng)
1
e
<x<y<1
時,試比較
y
x
1+lny
1+lnx
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=2t-3(t∈R且t≠±1),an+1=
(2tn+1-3)an+2(t-1)tn-1
an+2tn-1
(n∈N*).
(1)當(dāng)t=2時,求證:{
2n-1
an+1
}
是等差數(shù)列;
(2)若t>0,試比較an+1與an的大小;
(3)在(2)的條件下,已知函數(shù)f(x)=
x
x2+4
(x>0),是否存在正整數(shù)t,使得對一切n∈N*不等式f(an+1)<f(an)恒成立?若存在,求出t的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案