【題目】已知橢圓經(jīng)過(guò)點(diǎn) 的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.

(1)求橢圓的方程;

(2)在橢圓上是否存在相異兩點(diǎn),使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點(diǎn)在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(2)3

【解析】試題分析:(1)由橢圓幾何意義得,再根據(jù)A在橢圓上,列方程組,解得,(2)先設(shè)直線的方程,并與橢圓方程聯(lián)立解出E點(diǎn)橫坐標(biāo);根據(jù)直線與直線的斜率互為相反數(shù),可推出F點(diǎn)橫坐標(biāo),再根據(jù)線段的中點(diǎn)在軸上,解出直線的斜率,最后根據(jù)幾何性質(zhì)得的角平分線方程為.

試題解析:解:(1)由已知得,

解得

∴橢圓的方程.

(2)設(shè)直線的方程為,代入,得

.(*)

設(shè), ,且是方程(*)的根,

代替上式中的,可得

的中點(diǎn)在軸上,∴,

,解得,

因此滿足條件的點(diǎn), 存在.

由平面幾何知識(shí)可知的角平分線方程為.

∴所求弦長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),曲線在點(diǎn)處的切線與直線垂直.

(1)試比較的大小,并說(shuō)明理由;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ﹣ )=1,A,B分別為C與x軸,y軸的交點(diǎn).
(1)寫(xiě)出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個(gè)動(dòng)點(diǎn), (λ>0),| || |=2,求動(dòng)點(diǎn)Q的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程的三個(gè)實(shí)根分別為一個(gè)橢圓,一個(gè)拋物線,一個(gè)雙曲線的離心率,則的取值范圍(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市出租車收費(fèi)標(biāo)準(zhǔn)如下:①起步價(jià)3km(含3km)為10元;②超過(guò)3km以外的路程按2元/km收費(fèi);③不足1km按1km計(jì)費(fèi).
(1)試寫(xiě)出收費(fèi)y元與x(km)(0<x≤5)之間的函數(shù)關(guān)系式;
(2)若某人乘出租車花了24元錢(qián),求此人乘車?yán)锍蘹km的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】濟(jì)南市開(kāi)展支教活動(dòng),有五名教師被隨機(jī)的分到A、B、C三個(gè)不同的鄉(xiāng)鎮(zhèn)中學(xué),且每個(gè)鄉(xiāng)鎮(zhèn)中學(xué)至少一名教師,
(1)求甲乙兩名教師同時(shí)分到一個(gè)中學(xué)的概率;
(2)求A中學(xué)分到兩名教師的概率;
(3)設(shè)隨機(jī)變量X為這五名教師分到A中學(xué)的人數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 ,焦點(diǎn), 為坐標(biāo)原點(diǎn),直線(不垂直軸)過(guò)點(diǎn)且與拋物線交于兩點(diǎn),直線的斜率之積為.

(1)求拋物線的方程;

(2)若為線段的中點(diǎn),射線交拋物線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽另一個(gè)人當(dāng)裁判,設(shè)每周比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,假設(shè)每局比賽中甲勝乙的概率為,甲勝丙,乙勝丙的概率都是,各局的比賽相互獨(dú)立,第一局甲當(dāng)裁判.

(1)求第三局甲當(dāng)裁判的概率;

(2)記前四次中乙當(dāng)裁判的次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0, )和( ,+∞)上的單調(diào)性并用定義法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案