20.若$sinα=\frac{{\sqrt{5}}}{5}$,$sinβ=\frac{{\sqrt{10}}}{10}$,且α,β為鈍角,則α+β的值為$\frac{7π}{4}$.

分析 求出α,β的余弦函數(shù)值,然后利用兩角和的余弦函數(shù)求解即可.

解答 解:$sinα=\frac{{\sqrt{5}}}{5}$,$sinβ=\frac{{\sqrt{10}}}{10}$,且α,β為鈍角,
可得cosα=$-\sqrt{1-{sin}^{2}α}$=-$\frac{2\sqrt{5}}{5}$.
cosβ=-$\sqrt{1-{sin}^{2}β}$=-$\frac{3\sqrt{10}}{10}$.
cos(α+β)=cosαcosβ-sinαsinβ=$-\frac{2\sqrt{5}}{5}×(-\frac{3\sqrt{10}}{10})-\frac{\sqrt{5}}{5}×\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,
∴α+β=$\frac{7π}{4}$.
故答案為:$\frac{7π}{4}$.

點評 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sin2(x+$\frac{π}{12}$)-sinxcosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)銳角△ABC中角A,B,C所對的邊分別為a,b,c,f(B)=$\frac{1}{2}$,a+c=3,b=$\sqrt{5}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\frac{1}{1+x}$,g(x)=x2+2,則f[g(2)]=( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某籃球選手近五場比賽的上場時間分別為:9.7,9.9,10.1,10.2,10.1(單位:分鐘),則這組數(shù)據(jù)的方差為0.044.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.請觀察數(shù)列:1,1,2,3,5,( 。,13…運用合情推理,括號里的數(shù)最可能是( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程.
(1)求與橢圓$\frac{x^2}{9}$+$\frac{y^2}{4}$=1有公共焦點,且離心率e=$\frac{\sqrt{5}}{2}$的雙曲線的方程;
(2)過P(3,$\frac{15}{4}$)和Q(-$\frac{16}{3}$,5)兩點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+2cos2x-1(x∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為b、a、c,若f(A)=$\frac{1}{2}$,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,b,a,c成等差數(shù)列,求角A及a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等比數(shù)列{an}為遞增數(shù)列,且a52=a10,2(an+an+2)=5an+1,則數(shù)列{an}的通項公式an=(  )
A.2nB.2n+1C.($\frac{1}{2}$)nD.($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓的焦點在x軸,離心率e=$\frac{1}{2}$,短軸長為2$\sqrt{5}$,直線y=x+m與橢圓相交于A、B兩點,且|AB|=$\frac{4\sqrt{5}}{5}$.
(1)求橢圓的方程; 
(2)求m的值.

查看答案和解析>>

同步練習(xí)冊答案