A. | 2n | B. | 2n+1 | C. | ($\frac{1}{2}$)n | D. | ($\frac{1}{2}$)n+1 |
分析 設(shè)等比數(shù)列的首項(xiàng)為a1,公比為q,由題意列關(guān)于a1和q的方程組,求得首項(xiàng)和公比,代入等比數(shù)列的通項(xiàng)公式得答案.
解答 解:設(shè)等比數(shù)列的首項(xiàng)為a1,公比為q,
由a52=a10,2(an+an+2)=5an+1,得
$\left\{\begin{array}{l}{({a}_{1}{q}^{4})^{2}={a}_{1}{q}^{9}}\\{2({a}_{1}+{a}_{1}{q}^{2})=5{a}_{1}q}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=\frac{1}{2}}\\{q=\frac{1}{2}}\end{array}\right.$(舍),$\left\{\begin{array}{l}{{a}_{1}=2}\\{q=2}\end{array}\right.$.
∴${a}_{n}=2•{2}^{n-1}={2}^{n}$.
故選:A.
點(diǎn)評 本題考查數(shù)列遞推式,考查了等比數(shù)列的通項(xiàng)公式的求法,訓(xùn)練了方程組的解法,是基礎(chǔ)的計(jì)算題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{2}{7}$)${\;}^{\frac{1}{4}}$ | B. | ($\frac{2}{7}$)4 | C. | 5${\;}^{\frac{1}{4}}$ | D. | ($\frac{7}{2}$)${\;}^{\frac{1}{4}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 8 | 15 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | x | 3 | 2 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 3 |
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com