某市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中度重污染重度污染
天數(shù)413183091115
記某企業(yè)每天由于空氣污染造成的經(jīng)濟損失為S(單位:元),空氣質(zhì)量指數(shù)API為ω,在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當API為150時造成的經(jīng)濟損失為500元,當API為200時,造成的經(jīng)濟損失為700元);當API大于300時造成的經(jīng)濟損失為2000元.
(1)試寫出S(ω)表達式;
(2)試估計在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認為該市本年空氣重度污染與供暖有關(guān)?
P(K2≥kc0.250.150.100.050.0250.0100.0050.001
Kc1.3232.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

非重度污染重度污染合計
供暖季
非供暖季
合計100
考點:獨立性檢驗
專題:綜合題,概率與統(tǒng)計
分析:(1)根據(jù)在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當API為150時造成的經(jīng)濟損失為500元,當API為200時,造成的經(jīng)濟損失為700元);當API大于300時造成的經(jīng)濟損失為2000元,可得函數(shù)關(guān)系式;
(2)由500<S≤900,得150<ω≤250,頻數(shù)為39,即可求出概率;
(3)根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)所給的觀測值的公式,代入數(shù)據(jù)做出觀測值,同臨界值進行比較,即可得出結(jié)論.
解答: 解:(1)根據(jù)在區(qū)間[0,100]對企業(yè)沒有造成經(jīng)濟損失;在區(qū)間(100,300]對企業(yè)造成經(jīng)濟損失成直線模型(當API為150時造成的經(jīng)濟損失為500元,當API為200時,造成的經(jīng)濟損失為700元);當API大于300時造成的經(jīng)濟損失為2000元,可得S(ω)=
0,x∈[0,100]
4ω-100,x∈(100,300]
200,x∈(300,+∞)
;
(2)設(shè)“在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于500元且不超過900元”為事件A;
由500<S≤900,得150<ω≤250,頻數(shù)為39,
∴P(A)=
39
100

(2)根據(jù)以上數(shù)據(jù)得到如表:
非重度污染重度污染合計
供暖季22830
非供暖季63770
合計8515100
K2的觀測值K2=
100×(63×8-22×7)2
85×15×30×70
≈4.575>3.841
所以有95%的把握認為空氣重度污染與供暖有關(guān).
點評:本題考查概率知識,考查列聯(lián)表,觀測值的求法,是一個獨立性檢驗,我們可以利用臨界值的大小來決定是否拒絕原來的統(tǒng)計假設(shè),若值較大就拒絕假設(shè),即拒絕兩個事件無關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=|x+1|+|x-1|,下列敘述正確的是( 。
A、是奇函數(shù)且最小值是2
B、是偶函數(shù)且最小值是2
C、是奇函數(shù)且無最小值
D、是偶函數(shù)且無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知映射A→B的對應(yīng)法則f:x→3x+1,則B中的元素7在A中的與之對應(yīng)的元素是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)m(x)=x3-
3
x2,h(x)=
3
ax2
-3ax
(1)若函數(shù)f(x)=m(x)-h(x)在x=1處取得極值,求實數(shù)a的值;
(2)若函數(shù)f(x)=m(x)-h(x)在(-∞,+∞)不單調(diào),求實數(shù)a的取值范圍;
(3)判斷過點A(1,-
5
2
)
可作曲線f(x)=m(x)+
3
x2
-3x多少條切線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)
的最小正周期為π,則該函數(shù)的圖象是( 。
A、關(guān)于直線x=
π
8
對稱
B、關(guān)于點(
π
4
,0)
對稱
C、關(guān)于直線x=
π
4
對稱
D、關(guān)于點(
π
8
,0)
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足不等式x(x2+1)>(x+1)(x2-x+1)的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的不等式|x+1|+|x+2|≥k,對于?x∈R恒成立,則實數(shù)k的取值范圍是( 。
A、[2,+∞]
B、(-1,+∞)
C、(-∞,1]
D、(3,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x),對任意x,y∈R,有f(x+y)=f(x)+f(y),且當x>0時,恒有f(x)>0,
(1)求f(0);    
(2)判斷該函數(shù)的奇偶性;
(3)求證:x∈R時 f(x)為單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|-5<x<5},B={x|0≤x<7}|.求:
(1)A∩B
(2)A∪B
(3)A∪∁UB
(4)(∁UA)∩(∁UB)

查看答案和解析>>

同步練習(xí)冊答案