2.已知等比數(shù)列{an}中,a1=1,且$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$,那么S5的值是( 。
A.15B.31C.63D.64

分析 先求出公比,再根據(jù)求和公式計(jì)算即可.

解答 解:設(shè)公比為q,a1=1,且$\frac{{{a_4}+{a_5}+{a_8}}}{{{a_1}+{a_2}+{a_5}}}=8$,
∴$\frac{{q}^{3}+{q}^{4}+{q}^{7}}{1+q+{q}^{4}}$=q3=8,
∴q=2,
∴S5=$\frac{1(1-{2}^{5})}{1-2}$=31,
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式和等比數(shù)列的前n項(xiàng)和,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若存在x0∈[-1,1]使得不等式|4${\;}^{{x}_{0}}$-a•2${\;}^{{x}_{0}}$+1|≤2${\;}^{{x}_{0}+1}$成立,則實(shí)數(shù)a的取值范圍是[0,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合M={x|$\frac{1}{x}$<2},集合N={x|-1<x<2},則M∩N等于(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<0或$\frac{1}{2}$<x<2}C.{x|-1<x<$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$或1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個(gè)車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了4次試驗(yàn),收集數(shù)據(jù)如表所示,根據(jù)右表可得回歸方程$\hat y=\hat bx+\hat a$中的$\hat b$為9.4,據(jù)此可估計(jì)加工零件數(shù)為6時(shí)加工時(shí)間大約為( 。
零件數(shù)x(個(gè))2345
加工時(shí)間y(min)26394954
A.63.6 minB.65.5 minC.67.7 minD.72.0 min

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中角A,B,C的對(duì)邊分別是a,b,c,若3bsinA=ccosA+acosC,則sinA=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如下表:

X
人數(shù)
Y
ABC
A144010
Ba36b
C28834
若抽取學(xué)生n人,成績(jī)分為A(優(yōu)秀)、B(良好)、C(及格)三個(gè)等級(jí),設(shè)x,y分別表示數(shù)學(xué)成績(jī)與地理成績(jī),例如:表中地理成績(jī)?yōu)锳等級(jí)的共有14+40+10=64人,數(shù)學(xué)成績(jī)?yōu)锽等級(jí)且地理成績(jī)?yōu)镃等級(jí)的有8人.已知x與y均為A等級(jí)的概率是0.07.
(1)設(shè)在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求a,b的值;
(2)已知a≥8,b≥6,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.晚自習(xí)結(jié)束后,幾位同學(xué)在一起討論問題,小李看到小楊把三角等式cos(α+β)=cosαcosβ-sinαsinβ錯(cuò)寫成了cos(α+β)=cosα-sinβ.愛思考的他給大家提出了以下幾個(gè)問題:
(1)等式cos(α+β)=cosα-sinβ一定成立嗎?請(qǐng)說明理由;
(2)等式cos(α+β)=cosα-sinβ一定不成立嗎?請(qǐng)說明理由;
(3)等式cos(α+β)=cosα-sinβ何時(shí)成立?請(qǐng)說明理由.
經(jīng)過一番熱烈的討論后,熄燈前幾位同學(xué)得出了一致的結(jié)論,結(jié)束了討論,現(xiàn)在,請(qǐng)你也來試一試吧!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且b2+c2-a2=bc.
(Ⅰ)求角A的大小;
(Ⅱ)設(shè)函數(shù)$f(x)=sin\frac{x}{2}cos\frac{x}{2}+\sqrt{3}{cos^2}\frac{x}{2}$,當(dāng)f(B)取最大值時(shí),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{a}$+y2=1(a>1)的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,若∠BAO+∠BFO=90°,則a的值為( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{1+\sqrt{5}}{2}$C.$\sqrt{\frac{1+\sqrt{5}}{2}}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案