已知函數(shù)(為常數(shù)).
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)若函數(shù)的圖像向左平移個(gè)單位后,得到函數(shù)的圖像關(guān)于軸對稱,求實(shí)數(shù)的最小值.
(1);;(2).
解析試題分析:(1)利用兩角和與差的公式展開,再逆用公式合成“一角一函數(shù)”形式,再研究性質(zhì);(2)圖象平移后,利用三角函數(shù)誘導(dǎo)公式使函數(shù)變?yōu)榕己瘮?shù)即可.
試題解析:(1)
4分
的最小正周期為 5分
當(dāng),即時(shí),函數(shù)單調(diào)遞增,故所求單調(diào)增區(qū)間為 8分
(2)函數(shù)的圖像向左平移個(gè)單位后得, 9分
要使的圖像關(guān)于軸對稱,只需 11分
即,所以的最小值為. 12分
考點(diǎn):1.三角函數(shù)兩角和與差的正逆用;2.三角函數(shù)的單調(diào)性、周期性;3.圖象的平移;4.誘導(dǎo)公式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且函數(shù)的最小正周期為.
(1)求的值和函數(shù)的單調(diào)增區(qū)間;
(2)在中,角A、B、C所對的邊分別是、、,又,,的面積等于,求邊長的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位有、、三個(gè)工作點(diǎn),需要建立一個(gè)公共無線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個(gè)工作點(diǎn)的距離相等.已知這三個(gè)工作點(diǎn)之間的距離分別為,,.假定、、、四點(diǎn)在同一平面內(nèi).
(1)求的大。
(2)求點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標(biāo)系中,角的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合,終邊交單位圓于點(diǎn),且.將角的終邊按逆時(shí)針方向旋轉(zhuǎn),交單位圓于點(diǎn).記.
(Ⅰ)若,求;
(Ⅱ)分別過作軸的垂線,垂足依次為.記△ 的面積為,△的面積為.若,求角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知銳角中的內(nèi)角、、的對邊分別為、、,定義向量,,且.
(1)求的單調(diào)減區(qū)間;
(2)如果,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知設(shè)函數(shù) (Ⅰ)當(dāng),求函數(shù)的值域;
(Ⅱ)當(dāng)時(shí),若="8," 求函數(shù)的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com