【題目】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},則A∩B=(
A.(﹣∞,﹣1)
B.(﹣1,
C.﹙ ,3﹚
D.(3,+∞)

【答案】D
【解析】解:因?yàn)锽={x∈R|(x+1)(x﹣3)>0﹜={x|x<﹣1或x>3},
又集合A={x∈R|3x+2>0﹜={x|x },
所以A∩B={x|x }∩{x|x<﹣1或x>3}={x|x>3},
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的交集運(yùn)算的相關(guān)知識,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立,以及對解一元二次不等式的理解,了解求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時,小于取中間,大于取兩邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人們社會責(zé)任感與公眾意識的不斷提高,越來越多的人成為了志愿者.某創(chuàng)業(yè)園區(qū)對其員工是否為志愿者的情況進(jìn)行了抽樣調(diào)查,在隨機(jī)抽取的10位員工中,有3人是志愿者.
(1)在這10人中隨機(jī)抽取4人填寫調(diào)查問卷,求這4人中恰好有1人是志愿者的概率P1;
(2)已知該創(chuàng)業(yè)園區(qū)有1萬多名員工,從中隨機(jī)調(diào)查1人是志愿者的概率為 ,那么在該創(chuàng)業(yè)園區(qū)隨機(jī)調(diào)查4人,求其中恰有1人是志愿者的概率P2;
(3)該創(chuàng)業(yè)園區(qū)的A團(tuán)隊(duì)有100位員工,其中有30人是志愿者.若在A團(tuán)隊(duì)隨機(jī)調(diào)查4人,則其中恰好有1人是志愿者的概率為P3 . 試根據(jù)(Ⅰ)、(Ⅱ)中的P1和P2的值,寫出P1 , P2 , P3的大小關(guān)系(只寫結(jié)果,不用說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,BC所對應(yīng)的邊分別為a,bc

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若ab,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個,生產(chǎn)一個衛(wèi)兵需分鐘,生產(chǎn)一個騎兵需分鐘,生產(chǎn)一個傘兵需分鐘,已知總生產(chǎn)時間不超過小時,若生產(chǎn)一個衛(wèi)兵可獲利潤元,生產(chǎn)一個騎兵可獲利潤元,生產(chǎn)一個傘兵可獲利潤元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù)與騎兵個數(shù)表示每天的利潤(元);

(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E: 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 離心率e= .過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yf(x)(x∈R),對函數(shù)yg(x)(x∈R),定義g(x)關(guān)于f(x)的“對稱函數(shù)”為函數(shù)yh(x)(x∈R),yh(x)滿足:對任意的x∈R,兩個點(diǎn)(x,h(x)),(x,g(x))關(guān)于點(diǎn)(x,f(x))對稱.若h(x)是g(x)=關(guān)于f(x)=3xb的“對稱函數(shù)”,且h(x)>g(x)恒成立,則實(shí)數(shù)b的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(axb)-x2-4x,曲線yf(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.

(Ⅰ)求a,b的值;

(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案