9.設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$圖象上任意兩點(diǎn),且$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),已知點(diǎn)M的橫坐標(biāo)為$\frac{1}{2}$.
(1)求點(diǎn)M的縱坐標(biāo);
(2)若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),其中n∈N*,且n≥2,求Sn

分析 (1)由題設(shè)條件知M是AB的中點(diǎn),由中點(diǎn)坐標(biāo)公式可以求出M點(diǎn)的給坐標(biāo).
(2)由(1)知f(x)+f(1-x)=1,Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),Sn=f($\frac{n-1}{n}$)+f($\frac{n-2}{n}$)+…+f($\frac{1}{n}$),兩式向加得,求出答案.

解答 解:(1)依題意$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),由知M為線段AB的中點(diǎn),
又因?yàn)镸的橫坐標(biāo)為$\frac{1}{2}$,A(x1,y1),B(x2,y2),
∴$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2}$,即x1+x2=1,
∴y1+y2=1+log2($\frac{{x}_{1}}{1-{x}_{1}}$•$\frac{{x}_{2}}{1-{x}_{2}}$)=1+log21=1,
∴$\frac{1}{2}$(y1+y2)=$\frac{1}{2}$,
∴點(diǎn)M的縱坐標(biāo)為定值$\frac{1}{2}$;
(2)由(1)可知f(x)+f(1-x)=1,
∵n≥2時(shí),Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),
∴Sn=f($\frac{n-1}{n}$)+f($\frac{n-2}{n}$)+…+f($\frac{1}{n}$),
兩式向加得,2Sn=n-1,
∴Sn=$\frac{n-1}{2}$(n∈N*且n≥2).

點(diǎn)評(píng) 本題考查了數(shù)列與函數(shù)、函數(shù)的圖象,函數(shù)圖象成中心對(duì)稱(chēng)的有關(guān)知識(shí),考查相關(guān)方法,考查了數(shù)列中常用的思想方法,如倒序相加法,裂項(xiàng)相消法求數(shù)列前n項(xiàng)的和,利用函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想解答熱點(diǎn)問(wèn)題--有關(guān)恒成立問(wèn)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,直線x+y+$\sqrt{3}$=0與橢圓E僅有一個(gè)公共點(diǎn).
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3所截得的弦長(zhǎng)為3,且與橢圓E交于A、B兩點(diǎn),求△ABO面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.長(zhǎng)方體中,AB=BC=4,CC1=2,求
(1)A到平面B1D1DB的距離;
(2)A1B1到平面ABC1D1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.有7名學(xué)生,3名女生,4名男生,站成一排照相,求不同的排法種數(shù)
(1)全部排成一排;
(2)全部排成一排,其中女生與女生站在一起,男生與男生站在一起;
(3)全部排成一排,其中男女相間排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=a0+a1x+a2x2+…+anxn(a0,a1,a2,…,an∈R)的導(dǎo)數(shù)是y′=a1+2a2x+…+nanxn-1(a1,a2,…,an∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sin(3π+θ)=$\frac{1}{4}$,求$\frac{sin(π+θ)}{sinθ[cos(π+θ)-1]}$-$\frac{sin(θ-2π)}{cos(θ+2π)sin(π+θ)-sin(-θ)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.用三角函數(shù)線比較sinl與cosl的大小,結(jié)果是sinl>cosl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求下列函數(shù)的定義域.
(1)f(x)=$\frac{1+tanx}{sinx}$;
(2)f(x)=$\sqrt{cosx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3\sqrt{3}}{2}$,$\sqrt{3}$bsinA=acosB,a+c=4.
(1)求a,c.
(2)求角B的平分線BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案