16.已知集合A={x|y=lg$\frac{1+x}{2-x}$},集合B={x|y=$\sqrt{1-x}$},則A∩B=(  )
A.(-∞,-1)B.(-1,1]C.[1,2)D.(2,+∞)

分析 求出A中x的范圍確定出A,求出B中x的范圍確定出B,找出兩集合的交集即可.

解答 解:由A中y=lg$\frac{1+x}{2-x}$,得到$\frac{1+x}{2-x}$>0,即(x+1)(x-2)<0,
解得:-1<x<2,即A=(-1,2),
由B中y=$\sqrt{1-x}$,得到1-x≥0,即x≤1,
∴B=(-∞,1],
則A∩B=(-1,1],
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實數(shù)x,y滿足-$\frac{π}{4}$≤x≤$\frac{π}{4}$,-$\frac{π}{4}$≤y≤$\frac{π}{4}$,若2•3x+sinx-2=0,9y+sinycosy-1=0,則cos(x-2y)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知ω>0,函數(shù)f(x)=cos(ωx-$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面四邊形ABCD中,AB⊥AD,BC=1,cosB=$\frac{2\sqrt{7}}{7}$,∠ACB=$\frac{2π}{3}$.
(1)求AC的長;
(2)若AD=$\sqrt{21}$,求CD的長和四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足:a1=a2=a3=k(常數(shù) k>0),an+1=$\frac{k+{a}_{n}{a}_{n-1}}{{a}_{n-2}}$(n≥3,n∈N*).?dāng)?shù)列{bn}滿足:bn=$\frac{{a}_{n}+{a}_{n+2}}{{a}_{n+1}}$(n∈N*).
(1)求 b1,b2,b3,b4的值;
(2)求出數(shù)列{bn}的通項公式;
(3)問:數(shù)列{an}的每一項能否均為整數(shù)?若能,求出k的所有可能值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.定義點P到圖形C上每一個點的距離的最小值為點P到圖形C的距離,那么平面內(nèi)到定圓C的距離與到定點A(A在圓C內(nèi)且不與圓心C重合)的距離相等的點的軌跡是( 。
A.直線B.C.橢圓D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知(3x+$\frac{a}{2x}$)(2x-$\frac{1}{x}$)5的展開式中的各項系數(shù)和為4,則x2項的系數(shù)為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,已知a=2,b=$\sqrt{6}$,A=45°,則滿足條件的三角形有( 。
A.一個B.兩個C.0D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若22x+1-7•2x-4=0,則x=2.

查看答案和解析>>

同步練習(xí)冊答案