分析 先求出$\overrightarrow{a}+\overrightarrow$=(1+x,-1),由(${\overrightarrow a$+$\overrightarrow b}$)⊥$\overrightarrow c$,得(${\overrightarrow a$+$\overrightarrow b}$)•$\overrightarrow c$=0,由此能求出x.
解答 解:∵$\overrightarrow a$=(1,-2),$\overrightarrow b$=(x,1),$\overrightarrow c$=(1,2),
∴$\overrightarrow{a}+\overrightarrow$=(1+x,-1),
∵(${\overrightarrow a$+$\overrightarrow b}$)⊥$\overrightarrow c$,
∴(${\overrightarrow a$+$\overrightarrow b}$)•$\overrightarrow c$=1+x-2=0,
解得x=1.
故答案為:1.
點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量的去處法則及向量垂直的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{1}{e}$ | D. | $\frac{1}{e^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | $\frac{9}{25}$ | C. | $-\frac{9}{25}$ | D. | $-\frac{7}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (0,1) | C. | (1,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | 2$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com