15.今天為星期四,則今天后的第22016天是(  )
A.星期 二B.星期三C.星期四D.星期五

分析 此類題一般用利用二項式定理展開,變?yōu)殛P(guān)于7的展開式,求得余數(shù),確定出今天后的第22016天是星期幾

解答 解:∵22016=8672=(7+1)672=C6720×7672×10+C6721×7671×11+C6722×7670×12+…+C672672×70×1672,
∴22016除7的余數(shù)是1,
故今天為星期四,則今天后的第22016天是星期五,
故選:D.

點評 本題主要考查二項式定理的應(yīng)用,求得22016除以7的余數(shù)為1,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=log3x.
(1)若關(guān)于x的方程f(ax)•f(ax2)=f(3)的解都在區(qū)間(0,1)內(nèi),求實數(shù)a的取值范圍;
(2)若f(x2-2ax+3)在[2,+∞)上單調(diào)遞增,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=$\frac{1}{2}$AA1,D是棱AA1的中點,DC1⊥BD.
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點B1到平面BDC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x+alnx在x=1處的切線與直線x+2y=0垂直,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求實數(shù)a的值;
(2)設(shè)x1,x2(x1<x2)是函數(shù)g(x)的兩個極值點,若|g(x1)-g(x2)|≥$\frac{3}{4}$-ln2,求b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在以原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,已知兩點A(2,$\frac{2}{3}$π),B(3,$\frac{π}{6}$),則△AOB的面積為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若a=0,求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)若函數(shù)g(x)=f(x)-x有兩個極值點x1,x2,求證:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ex-x2-1,x∈R.
(1)求證:f(x)≥-x2+x;
(2)若f(x)>kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若二次函數(shù)f(x)的頂點為A(1,16),其圖象在x軸上截得的線段長為8,則f(x)=0的兩根為5或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=|2x+3|,g(x)=-|x-2|+1
(Ⅰ)解不等式f(x)>|x-1|
(Ⅱ)若f(x)-2g(x)的最小值是m,且4a2+b2=m(ab≠0),求$\frac{1}{{a}^{2}}$+$\frac{9}{^{2}}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案