在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關系。可以得出的正確結論是:“設三棱錐A—BCD的三個側面ABC、ACD、ADB兩兩相互垂直,則                                       ”.

解析試題分析:建立從平面圖形到空間圖形的類比,于是作出猜想,證明如下:由于三棱錐的三個側面兩兩相互垂直,所以三條側棱兩兩垂直,可證明,則,在中,過點,垂足為,連接,∵,,∴,======.

考點:類比推理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

軸上與點和點等距離的點的坐標為          

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

為不重合的兩個平面,給出下列命題:
(1)若內(nèi)的兩條相交直線分別平行于內(nèi)的兩條直線,則平行于
(2)若外一條直線內(nèi)的一條直線平行,則平行;
(3)設相交于直線,若內(nèi)有一條直線垂直于,則垂直;
(4)直線垂直的充分必要條件是內(nèi)的兩條直線垂直.
上面命題中,真命題的序號            (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖所示,是平面圖形的直觀圖,則的面積是       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

下面是空間線面位置關系中傳遞性的部分相關命題:
①與兩條平行線中一條平行的平面必與另一條直線平行;
②與兩條平行線中一條垂直的平面 必與另一條直線垂直;
③與兩條垂直直線中一條平行的平面必與另一條直線垂直;
④與兩條垂直直線中一條垂直的平面必與另一條直線平行;
⑤與兩個平行平面中一個平行的直線必與另一個平面平行;
⑥與兩個平行平面中一個垂直的直線必與另一個平面垂直;
⑦與兩個垂直平面中一個平行的直線必與另一個平面垂直;
⑧與兩個垂直平面中一個垂直的直線必與另一個平面平行.
其中正確的命題個數(shù)有________個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖所示,正方體的棱長為1, 分別是棱,的中點,過直線的平面分別與棱、交于,設,,給出以下四個命題:

①平面平面;
②當且僅當時,四邊形的面積最。
③四邊形周長,是單調(diào)函數(shù);
④四棱錐的體積為常函數(shù);
以上命題中真命題的序號為           。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如果三個平面把空間分成六個部分,那么這三個平面的位置關系是                      。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

將正方形ABCD沿對角線BD折成直二面角ABDC,有如下四個結論:
ACBD;     ②△ACD是等邊三角形;
AB與平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正確結論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為     

查看答案和解析>>

同步練習冊答案