17.如圖,AB,CD是圓O的兩條互相垂直的直徑,E是圓O上的點,過E點作圓O的切線交AB的延長線于F,連結(jié)CE交AB于G點.
(1)求證:FG2=FA•FB;
(2)若圓O的半徑為2$\sqrt{3}$,OB=$\sqrt{3}$OG,求EG的長.

分析 (1)連接OE,DE,由弦切角定理知∠FEG=∠D,證明FG=FE,由切割線定理得FE2=FA•FB,即可證明:FG2=FA•FB;
(2)由相交弦定理得:BG•AG=EG•CG,即可求EG的長.

解答 (1)證明:連接OE,DE,由弦切角定理知∠FEG=∠D.
∵∠C+∠D=90°,
∴∠C+∠FEG=90°
又∠C+∠CGO=90°,∠CGO=∠FGE
∴∠C+∠FGE=90°,
∴∠FGE=∠FEG
即FG=FE                      …(5分)
由切割線定理得FE2=FA•FB,所以FG2=FA•FB;
(Ⅱ)解:由OB=$\sqrt{3}$OG=2$\sqrt{3}$知,OG=2,
∴AG=2$\sqrt{3}$+2,BG=2$\sqrt{3}$-2,
在Rt△OCG中,由OC=2$\sqrt{3}$,OG=2得,CG=4.
由相交弦定理得:BG•AG=EG•CG,
即(2$\sqrt{3}$+2)(2$\sqrt{3}$-2)=4EG,
∴EG=2.…(10分)

點評 本題考查弦切角定理、切割線定理、相交弦定理,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.若拋物線y2=2px(p>0)的準線經(jīng)過點(-1,1),則拋物線焦點坐標為(1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,三棱柱ADE-BCG中,四邊形ABCD是矩形,F(xiàn)是EG的中點,EA⊥AB,AD=AE=EF=1,平面ABGE⊥平面ABCD.
(1)求證:AF⊥平面FBC;
(2)求二面角B-FC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=-x2+alnx(a∈R).
(Ⅰ)當a=2時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=f(x)-2x+2x2,討論函數(shù)g(x)的單調(diào)性;
(Ⅲ)若(Ⅱ)中函數(shù)g(x)有兩個極值點x1,x2(x1<x2),且不等式g(x1)≥mx2恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD為菱形,G為PC的中點,E,F(xiàn)分別為AB,PB上一點,AB=4AE=4$\sqrt{2}$,PB=4PF.
(1)求證:EF∥平面BDG;
(2)求二面角C-DF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=120°,PA=PB=2$\sqrt{2}$.若點N在線段PD上,且PN=kPD(0<k<1),平面BCN與PA相交于點M.
(1)求證:AD∥MN;
(2)當k=$\frac{1}{4}$時,求直線BN與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,已知AB為⊙O的直徑,C、F為⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D,連結(jié)CF交AB于點E.若AB=6,ED=4,則EF=(  )
A.2B.$\sqrt{5}$C.$\frac{{4\sqrt{5}}}{3}$D.$\frac{{4\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,在△ABC中,AB=AC,以AB為直徑的圓O與邊BC,AC分別交于點D,E,且DF⊥AC于F.若CD=3,EA=$\frac{7}{5}$,則EF的長為$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.對甲、乙的學習成績進行抽樣分析,各抽五門功課,得到的觀測值如表:
6080709070
8060708075
問:甲、乙誰的平均成績較好?誰的各門功課發(fā)展較平衡?( 。
A.甲的平均成績較好,乙的各門功課發(fā)展較平衡
B.甲的平均成績較好,甲的各門功課發(fā)展較平衡
C.乙的平均成績較好,甲的各門功課發(fā)展較平衡
D.乙的平均成績較好,乙的各門功課發(fā)展較平衡

查看答案和解析>>

同步練習冊答案