7.對甲、乙的學習成績進行抽樣分析,各抽五門功課,得到的觀測值如表:
6080709070
8060708075
問:甲、乙誰的平均成績較好?誰的各門功課發(fā)展較平衡?( 。
A.甲的平均成績較好,乙的各門功課發(fā)展較平衡
B.甲的平均成績較好,甲的各門功課發(fā)展較平衡
C.乙的平均成績較好,甲的各門功課發(fā)展較平衡
D.乙的平均成績較好,乙的各門功課發(fā)展較平衡

分析 分別求出甲、乙二人的平均成績和方差,由此能求出結(jié)果.

解答 解:甲的平均成績$\overline{{x}_{1}}$=$\frac{1}{5}$(60+80+70+90+70)=74,
甲的方差${{S}_{1}}^{2}$=$\frac{1}{5}$[(60-74)2+(80-74)2+(70-74)2+(90-74)2+(70-74)2]=104.
乙的平均成績$\overline{{x}_{2}}$=$\frac{1}{5}$(80+60+70+80+75)=73,
乙的方差${{S}_{2}}^{2}$=$\frac{1}{5}$[(80-73)2+(60-73)2+(70-73)2+(80-73)2+(75-73)2]=56.
∴甲的平均成績較好,乙的各門功課發(fā)展較平衡.
故選:A.

點評 本題考查甲、乙二人的平均成績和各門課程發(fā)展的均衡程度的比較,是基礎(chǔ)題,解題時要認真審題,注意平均數(shù)、方差的計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,AB,CD是圓O的兩條互相垂直的直徑,E是圓O上的點,過E點作圓O的切線交AB的延長線于F,連結(jié)CE交AB于G點.
(1)求證:FG2=FA•FB;
(2)若圓O的半徑為2$\sqrt{3}$,OB=$\sqrt{3}$OG,求EG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知△ABC三個頂點A、B、C及平面內(nèi)一點P,滿足2$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,若實數(shù)λ滿足$\overrightarrow{AB}$+$\overrightarrow{AC}$=λ$\overrightarrow{AP}$,則λ的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知兩個隨機變量X,Y滿足X+2Y=4,且X~N(1,22),則E(Y),D(Y)依次是( 。
A.$\frac{3}{2}$,2B.$\frac{1}{2}$,1C.$\frac{3}{2}$,1D.$\frac{1}{2}$,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,D為BC邊中點,G為AD中點,直線EF過G與邊AB、AC相交于E、F,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,則m+n的最小值為( 。
A.4B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)函數(shù) f (x)是定義在R上的周期為2的函數(shù),當x∈[-1,1)時,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+1,-1≤x<0}\\{x+\frac{7}{4},0≤x<1}\end{array}\right.$,則f[f($\frac{3}{2}$)]=$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.從3件正品,2件次品中隨機抽取出兩件,則恰好是1件正品,1件次品的概率是( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1•a3=5
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{a_n}{2^n}$,Sn為數(shù)列{bn}的前n項和,證明:Sn<3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求下列函數(shù)的值域:
(1)y=log${\;}_{\frac{1}{2}}$$\sqrt{4-{x}^{2}}$;
(2)y=$\frac{{2}^{x}+1}{{2}^{x}-1}$.

查看答案和解析>>

同步練習冊答案