若logab•logbc•logc3=2,則a的值為
 
考點:換底公式的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的換底公式即可得出.
解答: 解:∵logab•logbc•logc3=2,
lgb
lga
lgc
lgb
lg3
lgc
=2,
∴2lga=lg3,
解得a=
3

故答案為:
3
點評:本題考查了對數(shù)的換底公式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

lg(100x)比lg(
x
100
)大(  )
A、200
B、104
C、4
D、
1
104

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

菱形ABCD所在平面外有一點P,且PC⊥平面ABCD,則PA于對角線BD的位置關(guān)系是異面且垂直
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過平面外的一點作平面的平行線,能且只能做一條
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+(a+1)x2+ax-2,曲線y=f(x)在點(1,f(1))處的切線在x軸上的截距為
7
11

(Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:當k<1時,曲線y=f(x)與y=(k-1)ex+2x-2有唯一公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(x-1)4(x-1)4=a(a>0),則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(1+x)-lg(1-x),判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

面面垂直的向量方法:證明這兩個平面的法向量是
 
;
面面垂直的判定定理:文字語言:
 
,符號語言:
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方形ADEF與梯形ABCD所在平面互相垂直,在梯形ABCD中,AB∥CD,△ABD和△DBC分別是以DB和CD為斜邊的等腰直角三角形,AD=1.
(Ⅰ)求證AF⊥平面ABCD;
(Ⅱ)求直線FC與平面ABCD所成角的正弦值;
(Ⅲ)在線段CE上是否存在點M,使得DM∥平面FAB,如果存在,說明點M滿足的條件,如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案