17.在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最好一位選手的成績.
(Ⅰ)求乙班總分超過甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

分析 (Ⅰ)先分別求出甲班前5位選手的總分和乙班前5位選手的總分,由此利用列舉法能求出乙班總分超過甲班的概率.
(Ⅱ)分別求出甲、乙兩班的平均分、方差,由此能求出結(jié)果.

解答 解:(Ⅰ)甲班前5位選手的總分為:88+89+90+91+92=450,
乙班前5位選手的總分為:82+84+92+91+94=443,
若乙班總分超過甲班,則甲、乙兩班第六位選手的成績可分別為:
(90,98),(90,99),(91,99)三種情況,
∴乙班總分超過甲班的概率p=$\frac{3}{10×10}$=$\frac{3}{100}$.
(Ⅱ)甲班平均分為$\overline{{x}_{甲}}$=$\frac{1}{6}$(88+89+90+91+92+90)=90,
乙班平均分為$\overline{{x}_{乙}}$=$\frac{1}{6}$(82+84+92+91+94+97)=90,
甲班方差S2=$\frac{1}{6}$(22+12+12+22)=$\frac{5}{3}$,
乙班方差S2=$\frac{1}{6}$(82+62+22+12+42+72)=$\frac{85}{3}$,
兩班的平均分相同,但甲班選手的方差小于乙班,
∴甲班選手間的實力相當(dāng),相差不大,
乙班選手間實力懸殊,差距較大.

點評 本題考查莖葉圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在△ABC中,∠B=45°,D是BC邊上一點,AB=$\frac{5}{2}\sqrt{6}$,AC=5$\sqrt{3}$,AD=5,∠ADB為銳角.
(1)求角∠ADC的大;
(2)求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow$=(y,2),若向量$\overrightarrow{a}$,$\overrightarrow$同向,則x+y的最小值為(  )
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點坐標(biāo)為( 。
A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(2,-3).若($\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),則實數(shù)m=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知平面α、β和直線m、n,下列結(jié)論正確的是( 。
A.若m⊥α,m⊥n,則n∥αB.若m∥α,n∥α,則m∥n
C.若m?β,且α⊥β,則m⊥αD.若m⊥β,且α∥β,則m⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$y=\frac{1}{{\sqrt{6-x-{x^2}}}}$的定義域為( 。
A.[-3,2]B.[-3,2)C.(-3,2)D.(-3,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.與橢圓$\frac{{x}^{2}}{4}$+y2=1共焦點且過點P(2,1)的雙曲線方程是(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.$\frac{{x}^{2}}{2}$-y2=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1D.x2-3y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線mx-y-m+2=0恒過定點A,若直線l過點A且與2x+y-2=0平行,則直線l的方程為(  )
A.2x+y-4=0B.2x+y+4=0C.x-2y+3=0D.x-2y-3=0

查看答案和解析>>

同步練習(xí)冊答案