A. | $\sqrt{2}$x±y=0 | B. | x±$\sqrt{3}$y=0 | C. | x±$\sqrt{2}$y=0 | D. | $\sqrt{3}$x±y=0 |
分析 根據(jù)的等邊三角形的性質(zhì),建立方程關(guān)系得到a,b的關(guān)系即可求出雙曲線的漸近線方程.
解答 解:∵右焦點(diǎn)F與虛軸的兩個(gè)端點(diǎn)構(gòu)成的三角形為等邊三角形,
∴tan∠OFB1=tan30°=$\frac{O{B}_{1}}{OF}$,
即$\frac{c}=\frac{\sqrt{3}}{3}$,則b2=$\frac{1}{3}$c2=$\frac{1}{3}$(a2+b2),
即a2=2b2,
則a=$\sqrt{2}$b,
即雙曲線的漸近線方程為y=$±\frac{a}x$=±$\frac{\sqrt{2}}{2}$x,
則x±$\sqrt{2}$y=0,
故選:C.
點(diǎn)評(píng) 本題主要考查雙曲線漸近線的求解,根據(jù)正三角形的邊長(zhǎng)關(guān)系建立a,b的關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,4] | B. | [0,2] | C. | $[{-\frac{3}{2},\frac{5}{2}}]$ | D. | [-4,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36π | B. | 16π | C. | 12π | D. | $\frac{16π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{1}{2}$,0)∪(0,2) | B. | (-∞,-$\frac{1}{2}$)∪(2,+∞) | C. | (-$\frac{1}{2}$,0)∪(2,+∞) | D. | (-∞,-$\frac{1}{2}$)∪(0,2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com