5.若(ax-1)6的展開式中第4項(xiàng)的系數(shù)為160,則a=-2.

分析 利用二項(xiàng)式展開式的通項(xiàng)公式求得展開式中第4項(xiàng)的系數(shù)為${C}_{6}^{3}$•a3•(-1)3=160,從而求得a的值.

解答 解:(ax-1)6的展開式中第4項(xiàng)的系數(shù)為${C}_{6}^{3}$•a3•(-1)3=160,a=-2,
故答案為:-2.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a1+3a2,a4=8,則a1=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左頂點(diǎn)為A,右焦點(diǎn)為F,P,Q為橢圓C上兩點(diǎn),圓O:x2+y2=r2(r>0).
(1)若PF⊥x軸,且滿足直線AP與圓O相切,求圓O的方程;
(2)若圓O的半徑為$\sqrt{3}$,點(diǎn)P,Q滿足kOP•kOQ=-$\frac{3}{4}$,求直線PQ被圓O截得弦長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某大學(xué)數(shù)學(xué)系需要安排6名大四同學(xué)到A,B,C三所學(xué)校實(shí)習(xí),每所學(xué)校安排2名同學(xué),已知甲不能到A學(xué)校,乙和丙不能安排到同一所學(xué)校,則安排方案的種數(shù)有( 。
A.24B.36C.48D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.5人站成一排,其中甲站在中間的概率為$\frac{1}{5}$,甲不在兩端的概率為$\frac{3}{5}$,甲不在排頭乙不在排尾的概率為$\frac{13}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.4位外省游客來江西游玩,若每人只能從廬山、井岡山、三清山中選擇一處游覽,則每個(gè)景點(diǎn)都有人去游覽的概率為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,$\sqrt{3}$asinB+bcosA=c.
(Ⅰ)求B;
(Ⅱ)若a=2$\sqrt{3}$c,S△ABC=2$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)F與虛軸的兩個(gè)端點(diǎn)構(gòu)成的三角形為等邊三角形,則雙曲線C的漸近線方程為(  )
A.$\sqrt{2}$x±y=0B.x±$\sqrt{3}$y=0C.x±$\sqrt{2}$y=0D.$\sqrt{3}$x±y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在10次拋擲硬幣的游戲中,正面出現(xiàn)的概率為$\frac{1}{5}$,則反面出現(xiàn)的概率是$\frac{4}{5}$.

查看答案和解析>>

同步練習(xí)冊答案