13.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同的動(dòng)點(diǎn)(包括端點(diǎn)A1,C1).給出以下四個(gè)結(jié)論:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的個(gè)數(shù)是( 。
A.4B.3C.2D.1

分析 令P與A1點(diǎn)重合,Q與C1點(diǎn)重合,可判斷①.當(dāng)P與A1點(diǎn)重合時(shí),BP與直線B1C所成的角最小,此時(shí)兩異面直線夾角為60°,可判斷②.根據(jù)平面OBD將四面體BDPQ可分成兩個(gè)底面均為平面OBD,高之和為PQ的棱錐(其中O為上底面中心),可判斷③;根據(jù)四面體BDPQ在該正方體六個(gè)面上的正投影的面積不變,可判斷④.

解答 解:對(duì)于①.當(dāng)P與A1點(diǎn)重合,Q與C1點(diǎn)重合時(shí),BP⊥DQ,故①正確;
對(duì)于②.當(dāng)P與A1點(diǎn)重合時(shí),BP與直線B1C所成的角最小,此時(shí)兩異面直線夾角為60°,故②錯(cuò)誤.
對(duì)于③.設(shè)平面A1B1C1D1兩條對(duì)角線交點(diǎn)為O,則易得PQ⊥平面OBD.平面OBD將四面體BDPQ可分成兩個(gè)底面均為平面OBD,高之和為PQ的棱錐,故四面體BDPQ的體積一定是定值,故③正確.
對(duì)于④.四面體BDPQ在上下兩個(gè)底面上的投影是對(duì)角線互相垂直且對(duì)角線長(zhǎng)度均為1的四邊形,其面積為定值.四面體BDPQ在四個(gè)側(cè)面上的投影,均為上底為$\frac{\sqrt{2}}{2}$,下底和高均為1的梯形,其面積為定值.故四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值.故④正確.
綜上可得:只有①③④正確.
故選:B.

點(diǎn)評(píng) 本題考查了綜合考查了正方體的性質(zhì)、空間位置關(guān)系、線面垂直的判定與性質(zhì)定理、棱錐的體積計(jì)算公式、直角三角形的邊角關(guān)系、異面直線所成的角,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.三個(gè)數(shù)a=$\sqrt{0.31}$,b=log20.31,c=20.31之間的大小關(guān)系是( 。
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知{a,b,c}={0,1,2},且下列三個(gè)關(guān)系:a≠2,b=2,c≠0只有一個(gè)正確,則100c+10b+a=102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x2-2xB.y=|lgx|C.y=3x+3-xD.y=$\frac{x}{{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x滿足f(1+x)=f(1-x)與f(x+2)=f(x),且當(dāng)x∈[3,4]時(shí),f(x)=x-2,則$f(\frac{1}{2})$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=a+2t}\\{y=4t}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosθ\\ y=sinθ\end{array}\right.$(θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知i是虛數(shù)單位,復(fù)數(shù)z(1-i)=i2014,則z的共軛復(fù)數(shù)為( 。
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2-2x,g(x)=2x+a,若對(duì)于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊經(jīng)過點(diǎn)(3,-4),則cosα的值為( 。
A.-$\frac{3}{4}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.-$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案