A. | $\frac{5}{7}$ | B. | $\frac{5}{3}$ | C. | $\frac{11}{7}$ | D. | $\frac{8}{3}$ |
分析 由條件利用正弦函數(shù)的圖象的對稱性求得函數(shù)的圖象的對稱軸方程,從而得出結(jié)論.
解答 解:函數(shù)f(x)=2sin(ωx-$\frac{π}{3}$)(0<ω<2π)滿足f(1)=1,
則2sin(ω-$\frac{π}{3}$)=1,
∴sin(ω-$\frac{π}{3}$)=$\frac{1}{2}$,∴ω-$\frac{π}{3}$=2kπ+$\frac{π}{6}$ 或ω-$\frac{π}{3}$=2kπ+$\frac{5π}{6}$,k∈Z.
∴ω=$\frac{π}{2}$ 或$\frac{7π}{6}$,
∴f(x)=2sin($\frac{π}{2}$x-$\frac{π}{3}$),或f(x)=2sin($\frac{7π}{6}$x-$\frac{π}{3}$),
令 $\frac{π}{2}$x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=2k+$\frac{5}{3}$,故它的圖象的對稱軸方程為x=2k+$\frac{5}{3}$,k∈Z.
令 $\frac{7π}{6}$x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{5}{7}$+$\frac{6}{7}$k,
故它的圖象的對稱軸方程為x=$\frac{5}{7}$+$\frac{6}{7}$k,k∈Z,
則m的值不可能是$\frac{8}{3}$,
故選:D.
點(diǎn)評 本題主要考查正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交且垂直 | B. | 異面且垂直 | C. | 相交且不垂直 | D. | 異面且不垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$ |
1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com