【題目】在平面直角坐標系中,直線的參數(shù)方程為:為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設曲線與直線交于兩點,若點的坐標為,求

【答案】(1),(2).

【解析】試題分析:

(1)消去參數(shù)可得直線的普通方程為,極坐標化為直角坐標可得曲線的直角坐標方程為

(2)將直線的參數(shù)方程代入曲線的直角坐標方程,可得,結(jié)合參數(shù)方程的幾何意義可知

試題解析:

(1)由直線的參數(shù)方程:得直線的普通方程為,

,配方得,

即曲線的直角坐標方程為

(2)將直線的參數(shù)方程代入曲線的直角坐標方程,得,

,

因為,所以可設是點所對應的參數(shù),則

又直線過點,所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】20171月,《中國青年報》社會調(diào)查中心聯(lián)合問卷網(wǎng),對多人進行了一項關(guān)于“二十四節(jié)氣”的調(diào)查,請選擇合適的圖表分別表示以下調(diào)查結(jié)果:

1)全部都知道、大部分知道、少部分知道和完全不知道“二十四節(jié)氣”日期的受訪者分別占12.6%49.0%、34.6%3.8%

2)調(diào)查顯示,受訪者最敏感的節(jié)氣是立春(50.9%)、冬至(46.4%)和清明(43.9%.其他依次為:立冬(32.2%)、立秋(32.1%)、立夏(29.6%)、夏至(28.5%)、大暑(20.7%)、驚蟄(18.8%)、春分(18.7%)、雨水(18.7%)、大寒(16.4%)、大雪(15.3%)、秋分(14.8%)、小暑(14.0%)、芒種(12.2%)、小滿(11.6%)、處暑(11.6%)、白露(11.3%)、霜降(10.7%)和小雪(10.5%.最不敏感的節(jié)氣是谷雨(10.4%)、小寒(9.7%)和寒露(7.9%.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對邊的邊長分別是,已知,

的面積等于,求;

,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:

(1)y關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,當價格x=40/kg日需求量y的預測值為多少?

參考公式:線性回歸方程其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別是,其離心率,點為橢圓上的一個動點,面積的最大值為3.

(1)求橢圓的標準方程;

(2)已知點,過點且斜率不為0的直線與橢圓相交于兩點,直線,軸分別相交于兩點,試問是否為定值?如果,求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,令.

(1)當時,求函數(shù)的單調(diào)區(qū)間及極值;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查某社區(qū)居民每天參加健身的時間,某機構(gòu)在該社區(qū)隨機采訪男性、女性各50名,其中每人每天的健身時間不少于1小時稱為“健身族”,否則稱其為"非健身族”,調(diào)查結(jié)果如下:

健身族

非健身族

合計

男性

40

10

50

女性

30

20

50

合計

70

30

100

(1)若居民每人每天的平均健身時間不低于70分鐘,則稱該社區(qū)為“健身社區(qū)”. 已知被隨機采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時間分別是1.2小時,0.8小時,1.5小時,0.7小時,試估計該社區(qū)可否稱為“健身社區(qū)”?

(2)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過5%的情況下認為“健身族”與“性別”有關(guān)?

參考公式: ,其中.

參考數(shù)據(jù):

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務,已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應的區(qū)間分別為, , ,繪制出頻率分布直方圖.

(1)求的值,并計算完成年度任務的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結(jié)論正確的是____.

①存在點,使得平面平面;

②存在點,使得平面;

的面積不可能等于;

④若分別是在平面與平面的正投影的面積,則存在點,使得.

查看答案和解析>>

同步練習冊答案