精英家教網 > 高中數學 > 題目詳情

【題目】如圖,單位圓上有一點,點以點為起點按逆時針方向以每秒弧度作圓周運動,點的縱坐標是關于時間的函數,記作.

1)當時,求;

2)若將函數向左平移個單位長度后,得到的曲線關于軸對稱,求的最小正值,并求此時的值域.

【答案】1;(2最小正值為3;值域為.

【解析】

1)由題意利用任意角的三角函數的定義求得初相,再根據正弦函數的周期性,可得,代入,即可求出結果;

2)根據圖像平移可知,又是偶函數,所以,,由此可得最小值為3,可得,再根據三角函數的性質,即可求出結果.

1)點是單位圓上一點,它從初始位置開始,按逆時針方向以每秒弧度作圓周運動,設初相為,∴,∴

所以,當時,.

2圖像關于軸對稱,則是偶函數,則,得,最小值為3.此時

,

,∴.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某單位為促進職工業(yè)務技能提升,對該單位120名職工進行一次業(yè)務技能測試,測試項目共5項.現(xiàn)從中隨機抽取了10名職工的測試結果,將它們編號后得到它們的統(tǒng)計結果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).

表1:

編號\測試項目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

規(guī)定:每項測試合格得5分,不合格得0分.

(1)以抽取的這10名職工合格項的項數的頻率代替每名職工合格項的項數的概率.

①設抽取的這10名職工中,每名職工測試合格的項數為,根據上面的測試結果統(tǒng)計表,列出的分布列,并估計這120名職工的平均得分;

②假設各名職工的各項測試結果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;

(2)已知在測試中,測試難度的計算公式為,其中為第項測試難度,為第項合格的人數,為參加測試的總人數.已知抽取的這10名職工每項測試合格人數及相應的實測難度如下表(表2):

表2:

測試項目

1

2

3

4

5

實測合格人數

8

8

7

7

2

定義統(tǒng)計量,其中為第項的實測難度,為第項的預測難度().規(guī)定:若,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:

表3:

測試項目

1

2

3

4

5

預測前預估難度

0.9

0.8

0.7

0.6

0.4

判斷本次測試的難度預估是否合理.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圓錐(其中為頂點,為底面圓心)的側面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】aR,數列{an}滿足a1aan+1an﹣(an23,則( 。

A.a4時,a10210B.時,a102

C.時,a10210D.時,a102

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,函數.

1)討論的單調性;

2)證明:當時,.

3)證明:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐的底面是等腰梯形,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.

1)求證:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的單調區(qū)間和的極值;

(2)對于任意的,,都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某高校綜合評價有兩步:第一步是材料初審,若材料初審不合格,則不能進入第二步面試;若材料初審合格,則進入第二步面試.只有面試合格者,才能獲得該高校綜合評價的錄取資格,現(xiàn)有A,BC三名學生報名參加該高校的綜合評價,假設A,B,C三位學生材料初審合格的概率分別是,,;面試合格的概率分別是,,.

1)求A,B兩位考生有且只有一位考生獲得錄取資格的概率;

2)記隨機變量XA,B,C三位學生獲得該高校綜合評價錄取資格的人數,求X的概率分布與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的特殊狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,根據船接收到臺和臺電磁波的時間差,計算出船發(fā)射臺的距離比到發(fā)射臺的距離遠30海里,則點的坐標(單位:海里)為(

A.B.

C.D.

查看答案和解析>>

同步練習冊答案